Home
Class 12
MATHS
Let f: R->R satisfying f((x+y)/k)=(f(...

Let `f: R->R` satisfying `f((x+y)/k)=(f(x)+f(y))/k( k != 0,2)`.Let `f(x)` be differentiable on `R and f'(0) = a`, then determine `f(x)`.

A

even function

B

neither even nor odd function

C

either zero or odd function

D

either zero or even function

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|50 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R satisfying f((x+y)/(k))=(f(x)+f(y))/(k)(k!=0,2). Let f(x) be differentiable on R and f'(0)=a then determine f(x)

Let f : R to R be a function such that f(x+y) = f(x)+f(y),Aax, y in R. If f (x) is differentiable at x = 0, then

Let f:R to R be given by f(x+y)=f(x)-f(y)+2xy+1"for all "x,y in R If f(x) is everywhere differentiable and f'(0)=1 , then f'(x)=

Let f : R rarr R satisfying |f(x)|le x^(2), AA x in R , then show that f(x) is differentiable at x = 0.

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The derivative of f(x) satisfies the equation

Let f(x+y)=f(x)+f(y)+2xy-1 for all real x and f(x) be a differentiable function.If f'(0)=cosalpha, the prove that f(x)>0AA x in R

Let f(x) be a differentiable function satisfying the condition f((x)/(y)) = (f(x))/(f(y)) , where y != 0, f(y) != 0 for all x,y y in R and f'(1) = 2 The value of underset(-1)overset(1)(int) f(x) dx is

Let f(x + y) = f(x) .f(y) AA x, y in R suppose that f(k) =3, k in R and f'(0) = 11 then find f'(k)