Home
Class 12
MATHS
Prove that tan^(-1)(sqrt((1-cosx)/(1+cos...

Prove that `tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|64 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))}, -pi

Simplify: tan^(-1)(sqrt((1+cosx)/(1-cosx))) , 0< x < pi

Prove that tan^(-1) ((1-sqrt(x))/(1+sqrt(x))) = pi/4 - tan^(-1) sqrt(x) , "where" x gt 0

Differentiate the following w.r.t. x : tan^(-1)sqrt((1-cosx)/(1+cosx))

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

Express each of the following in the simplest form: tan^(-1){sqrt((1-cosx)/(1+cosx))}, -pi

Evaluate: (i) intsin^(-1)(cosx) dx , 0lt=xlt=pi (ii) inttan^(-1){sqrt(((1-cos2x)/(1+cos2x)))} dx , 0

Find the differentiation of y=tan^(-1)sqrt((1+cosx/2)/(1-cosx/2))