Home
Class 12
MATHS
If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,...

If `u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v)` is `3/2xcosx^3cos e cx^2` `2/3sinx^3secx^2` `tanx` (d) none of these

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|64 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

u=f(x^(3)),v=g(x^(2)),f'(x)=cos x,andg'(x)=sin x,then(du)/(dv)

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

If u=f(x^2), v=g(x^3) , f'(x)=sinx and g'(x)= cos x then find (du) / (dv) .

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>20

f(x) = (4x^3-3x^2)/6 -2Sinx +(2x-1)Cosx , then f(x) is

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

If f(1)=3,f^(prime)(1)=2,f^(1)=4,t h e n(f^(-1))^()(3)= a. 1 b. -1/2 c. -2 d. none of these

If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx,sin^(2)x):}| then

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))