Home
Class 12
MATHS
Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy, f...

Let `(f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy`, for all `x,yinR,f(x)` is differentiable and `f'(0)=1.` Let `g(x)` be a derivable function at `x=0` and follows the function rule `g((x+y)/(k))=(g(x)+g(y))/(k),kinR,kne0,2andg'(0)-lambdag'(0)ne0.`
If the graphs of `y=f(x) and y=g(x)` intersect in coincident points then `lambda` can take values

A

-3

B

1

C

-1

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy , for all x,yinR,f(x) is differentiable and f'(0)=1. Domain of log(f(x)), is

Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy , for all x,yinR,f(x) is differentiable and f'(0)=1. Range of y=log_(3//4)(f(x)) is

Let f(x+2y)=f(x)(f(y))^(2) for all x,y and f(0)=1. If f is derivable at x=0 then f'(x)=

Let f:R to R be given by f(x+y)=f(x)-f(y)+2xy+1"for all "x,y in R If f(x) is everywhere differentiable and f'(0)=1 , then f'(x)=

If f(x+y)=f(x)-f(y)+2xy-1AAx,yinR . Also if f(x) is differentiable and f'(0)=b also f(x)gt0AAx , then the set of values of b

Let f(x+y)=f(x)+f(y)+2xy-1 for all real x and f(x) be a differentiable function.If f'(0)=cosalpha, the prove that f(x)>0AA x in R

Let f:R rarr R satisfying f((x+y)/(k))=(f(x)+f(y))/(k)(k!=0,2). Let f(x) be differentiable on R and f'(0)=a then determine f(x)

Let f(x+y)+f(x-y)=2f(x)f(y)AA x,y in R and f(0)=k, then

Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists and f'(0) = - sin alpha , then f{f'(0)} is