Home
Class 12
MATHS
If f(x)=sin^(-1)(3x-4x^(3)). Then answer...

If `f(x)=sin^(-1)(3x-4x^(3)).` Then answer the following
The value of `f'((1)/(sqrt2))` , is

A

-3

B

3

C

`-3sqrt2`

D

`3sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \sin^{-1}(3x - 4x^3) \) and evaluate it at \( x = \frac{1}{\sqrt{2}} \). ### Step-by-Step Solution: 1. **Differentiate the Function**: We start with the function: \[ f(x) = \sin^{-1}(3x - 4x^3) \] To find the derivative \( f'(x) \), we use the chain rule: \[ f'(x) = \frac{1}{\sqrt{1 - (3x - 4x^3)^2}} \cdot \frac{d}{dx}(3x - 4x^3) \] Now, we differentiate \( 3x - 4x^3 \): \[ \frac{d}{dx}(3x - 4x^3) = 3 - 12x^2 \] Therefore, we have: \[ f'(x) = \frac{3 - 12x^2}{\sqrt{1 - (3x - 4x^3)^2}} \] 2. **Evaluate at \( x = \frac{1}{\sqrt{2}} \)**: Now we substitute \( x = \frac{1}{\sqrt{2}} \) into the derivative: \[ f'\left(\frac{1}{\sqrt{2}}\right) = \frac{3 - 12\left(\frac{1}{\sqrt{2}}\right)^2}{\sqrt{1 - (3\left(\frac{1}{\sqrt{2}}\right) - 4\left(\frac{1}{\sqrt{2}}\right)^3)^2}} \] First, calculate \( \left(\frac{1}{\sqrt{2}}\right)^2 \): \[ \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] Now substitute this into the expression: \[ f'\left(\frac{1}{\sqrt{2}}\right) = \frac{3 - 12 \cdot \frac{1}{2}}{\sqrt{1 - (3 \cdot \frac{1}{\sqrt{2}} - 4 \cdot \frac{1}{2\sqrt{2}})^2}} \] Simplifying the numerator: \[ 3 - 12 \cdot \frac{1}{2} = 3 - 6 = -3 \] 3. **Calculate the Denominator**: Next, we calculate the expression inside the square root in the denominator: \[ 3 \cdot \frac{1}{\sqrt{2}} - 4 \cdot \frac{1}{2\sqrt{2}} = \frac{3}{\sqrt{2}} - \frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] Now square this result: \[ \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] Thus, the denominator becomes: \[ \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] 4. **Final Calculation**: Now we can substitute back into our expression for \( f'\left(\frac{1}{\sqrt{2}}\right) \): \[ f'\left(\frac{1}{\sqrt{2}}\right) = \frac{-3}{\frac{1}{\sqrt{2}}} = -3 \cdot \sqrt{2} = -3\sqrt{2} \] ### Final Answer: \[ f'\left(\frac{1}{\sqrt{2}}\right) = -3\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'(0), is

If f'(x)=(1)/(x)+x^(2) and f(1)=(4)/(3) then find the value of f(x)

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

if f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f((sqrt(pi))/(3)) is

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

If f(x)=x^(3)+(1)/(x^(3))-4(x^(2)+(1)/(x^(2)))+13 then the value of f(2+sqrt(3))=

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

STATEMENT-1: The values of f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) lie in the interval [0,(3)/(sqrt(3))]. and STATEMENT-2The domain of definition of the function f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) is [-(pi)/(4),(pi)/(4)]

The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal to