Home
Class 12
MATHS
Differentiate |x|+a(0)x^(n)+a(1)x^(n-1)+...

Differentiate `|x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( |x| + a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n \), we need to consider the absolute value function \( |x| \) separately for the cases when \( x < 0 \) and \( x \geq 0 \). ### Step-by-step Solution: 1. **Identify the cases for \( |x| \)**: - For \( x < 0 \), \( |x| = -x \). - For \( x \geq 0 \), \( |x| = x \). 2. **Write the function \( y \)**: - For \( x < 0 \): \[ y = -x + a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n \] - For \( x \geq 0 \): \[ y = x + a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n \] 3. **Differentiate for \( x < 0 \)**: - Differentiate \( y \): \[ \frac{dy}{dx} = -1 + n a_0 x^{n-1} + (n-1) a_1 x^{n-2} + (n-2) a_2 x^{n-3} + \ldots + 0 \] - This simplifies to: \[ \frac{dy}{dx} = -1 + n a_0 x^{n-1} + (n-1) a_1 x^{n-2} + \ldots + a_1 \] 4. **Differentiate for \( x \geq 0 \)**: - Differentiate \( y \): \[ \frac{dy}{dx} = 1 + n a_0 x^{n-1} + (n-1) a_1 x^{n-2} + (n-2) a_2 x^{n-3} + \ldots + 0 \] - This simplifies to: \[ \frac{dy}{dx} = 1 + n a_0 x^{n-1} + (n-1) a_1 x^{n-2} + \ldots + a_1 \] 5. **Combine the results**: - The derivative can be expressed as: \[ \frac{dy}{dx} = \begin{cases} -1 + n a_0 x^{n-1} + (n-1) a_1 x^{n-2} + \ldots & \text{if } x < 0 \\ 1 + n a_0 x^{n-1} + (n-1) a_1 x^{n-2} + \ldots & \text{if } x \geq 0 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = a_(0)x^(n) + a_(1)x^(n-1) + a_(2) x^(n-2) + …. + a_(n-1)x + a_(n) , where a_(0), a_(1), a_(2),...., a_(n) are real numbers. If f(x) is divided by (ax - b), then the remainder is

Differentiate the following with respect of x:a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)++a_(n-1)x+a_(n)

Let f(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+......+a_(n),(a_(0)!=0) if a_(0)+a_(1)+a+_(2)+......+a_(n)=0 then the root of f(x) is

Let (a_(0))/(n+1)+(a_(1))/(n)+(a_(2))/(n-1)+...+(a_(n-1))/(2)+a_(n)=0 Show that there exists at least real x between 0 and 1 such that a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n)=0

If the polynomial equation a_(n)x^(n)+a_(n-1)x^(n-1)+a_(n-2)x^(n-2)+......+a_(0)=0,n being a positive integer,has two different real roots a and b. then between a and b the equation na_(n)x^(n-1)+(n-1)a_(n-1)x^(n-2)+......+a_(1)=0 has

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

Let a_(0)/(n+1) +a_(1)/n + a_(2)/(n-1) + ….. +(a_(n)-1)/2 +a_(n)=0 . Show that there exists at least one real x between 0 and 1 such that a_(0)x^(n) + a_(1)x^(n-1) + …..+ a_(n)=0

If a_(0), a_(1), a(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))