Home
Class 12
MATHS
Differentiate(sinx-xcosx)/(xsinx+cosx)...

Differentiate`(sinx-xcosx)/(xsinx+cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{\sin x - x \cos x}{x \sin x + \cos x} \), we will use the quotient rule of differentiation. The quotient rule states that if \( y = \frac{u}{v} \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = \sin x - x \cos x \) and \( v = x \sin x + \cos x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = \sin x - x \cos x \) - \( v = x \sin x + \cos x \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). **Differentiating \( u \):** \[ \frac{du}{dx} = \frac{d}{dx}(\sin x - x \cos x) \] Using the product rule on \( x \cos x \): \[ \frac{du}{dx} = \cos x - \left( \cos x + x (-\sin x) \right) = \cos x - \cos x + x \sin x = x \sin x \] **Differentiating \( v \):** \[ \frac{dv}{dx} = \frac{d}{dx}(x \sin x + \cos x) \] Using the product rule on \( x \sin x \): \[ \frac{dv}{dx} = \sin x + x \cos x - \sin x = x \cos x \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = \frac{(x \sin x + \cos x)(x \sin x) - (\sin x - x \cos x)(x \cos x)}{(x \sin x + \cos x)^2} \] ### Step 4: Simplify the Numerator Expanding the numerator: 1. First term: \[ (x \sin x + \cos x)(x \sin x) = x^2 \sin^2 x + x \sin x \cos x \] 2. Second term: \[ (\sin x - x \cos x)(x \cos x) = x \sin x \cos x - x^2 \cos^2 x \] Combining these: \[ x^2 \sin^2 x + x \sin x \cos x - (x \sin x \cos x - x^2 \cos^2 x) = x^2 \sin^2 x + x^2 \cos^2 x \] Thus, the numerator simplifies to: \[ x^2 (\sin^2 x + \cos^2 x) \] ### Step 5: Use the Pythagorean Identity Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \frac{dy}{dx} = \frac{x^2 \cdot 1}{(x \sin x + \cos x)^2} = \frac{x^2}{(x \sin x + \cos x)^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{x^2}{(x \sin x + \cos x)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

int(xcosx)/(xsinx+cosx)dx=

Differentiate sinx sin 2x

Differentiate y = (sinx)/(cosx)

Differentiate : (i) ((sinx + cosx)/(sinx - cos x)) , (ii) ((sec x - 1)/(secx + 1))

Differentiate (sinx)/((1+cotx))

Differentiate sin^(-1){(sinx+cosx)/(sqrt(2))}, -(3pi)/4

Differentiate x^ sinx +(sinx)^ cosx w.r.t x.

Differentiate x^(tanx)+(sinx)^(cosx) w.r.t. x.

Differentiate e^tanx sinx

Find the differentiation of (e^(2x)cosx)/(xsinx) w.r.t. \ x