Home
Class 12
MATHS
The value of lim(n rarr infty) (1)/(n) ...

The value of `lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n)` is equal to

A

`4e`

B

`(e)/(4)`

C

`(4)/(e)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \[ \lim_{n \to \infty} \frac{1}{n} \left( (n+1)(n+2)(n+3) \cdots (n+n) \right)^{\frac{1}{n}}, \] we will follow these steps: ### Step 1: Rewrite the product The expression inside the limit can be rewritten as: \[ (n+1)(n+2)(n+3) \cdots (n+n) = \prod_{r=1}^{n} (n+r). \] Thus, we can express our limit as: \[ \lim_{n \to \infty} \frac{1}{n} \left( \prod_{r=1}^{n} (n+r) \right)^{\frac{1}{n}}. \] ### Step 2: Simplify the product Now, we can factor out \(n\) from each term in the product: \[ \prod_{r=1}^{n} (n+r) = \prod_{r=1}^{n} n(1 + \frac{r}{n}) = n^n \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right). \] ### Step 3: Substitute back into the limit Substituting this back into our limit gives: \[ \lim_{n \to \infty} \frac{1}{n} \left( n^n \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n} \left( n^n \right)^{\frac{1}{n}} \left( \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}}. \] This simplifies to: \[ \lim_{n \to \infty} \frac{1}{n} \cdot n \cdot \left( \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}}. \] ### Step 4: Convert product to sum Now, we can take the logarithm of the product: \[ \log y = \frac{1}{n} \sum_{r=1}^{n} \log\left(1 + \frac{r}{n}\right). \] As \(n \to \infty\), this sum approaches the integral: \[ \log y \approx \int_{0}^{1} \log(1+x) \, dx. \] ### Step 5: Evaluate the integral To evaluate the integral: \[ \int \log(1+x) \, dx, \] we can use integration by parts. Let \(u = \log(1+x)\) and \(dv = dx\). Then \(du = \frac{1}{1+x} dx\) and \(v = x\). Thus, \[ \int \log(1+x) \, dx = x \log(1+x) - \int \frac{x}{1+x} \, dx. \] The second integral can be simplified: \[ \int \frac{x}{1+x} \, dx = \int \left(1 - \frac{1}{1+x}\right) dx = x - \log(1+x). \] Putting it all together, we have: \[ \int \log(1+x) \, dx = x \log(1+x) - (x - \log(1+x)) = (x + 1) \log(1+x) - x. \] Now, we evaluate from 0 to 1: \[ \left[(x + 1) \log(1+x) - x\right]_{0}^{1} = \left[2 \log(2) - 1\right] - \left[0\right] = 2 \log(2) - 1. \] ### Step 6: Final result Thus, we find: \[ \log y = 2 \log(2) - 1 \implies y = e^{2 \log(2) - 1} = \frac{4}{e}. \] Therefore, the final answer is: \[ \lim_{n \to \infty} \frac{1}{n} \left( (n+1)(n+2)(n+3) \cdots (n+n) \right)^{\frac{1}{n}} = \frac{4}{e}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

The value of lim_(n rarr oo)((1+(1)/(n(n+100))))/((1+(1)/(n(n+200)))^(n^(3))) is equal to