Home
Class 12
MATHS
Let f(x) =int-1^x e^(t^2) dt and h(x)=f(...

Let `f(x) =int_-1^x e^(t^2) dt and h(x)=f(1+g(x)),` where `g (x)` is defined for all `x, g'(x)` exists for all `x, and g(x) < 0 for x > 0.` If `h'(1)=e and g'(1)= 1,` then the possible values which `g(1)` can take

A

0

B

`-1`

C

`-2`

D

`-4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)),where h(x) is defined for all x in R. If g'(2) = e^4 and h' (2)=1 then absolute value of sum of all possible values of h(2), is

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

let f(x)=e^(x),g(x)=sin^(-1)x and h(x)=f(g(x)) th e n fin d (h'(x))/(h(x))

Let G(x)=int e^(x)(int_(0)^(x)f(t)dt+f(x))dx where f(x) is continuous on R. If f(0)=1,G(0)=0 then G(0) equals

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. If a, b and c are real numbers, then the value of lim(t to 0) In ((1)/...

    Text Solution

    |

  2. The value of lim(n to oo) sum(r=1)^(r=4n) (sqrtn)/(sqrt(r(3sqrtr+4sqrt...

    Text Solution

    |

  3. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  4. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  5. Let f(x)=int0^g(x) dx/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  6. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  7. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  8. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  9. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx, where 'a' is positiv...

    Text Solution

    |

  10. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  11. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  12. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  13. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  14. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  15. int(-1/sqrt3)^(-1/sqrt3)(x^4)/(1-x^4)cos^(- 1)((2x)/(1+x^2))dx

    Text Solution

    |

  16. int(0)^(infty)f(x+(1)/(x)). (In x )/(x)dx is equal to

    Text Solution

    |

  17. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  18. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where...

    Text Solution

    |

  19. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  20. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |