Home
Class 12
MATHS
Let f(x) be a function satisfying f\'(x)...

Let `f(x)` be a function satisfying `f\'(x)=f(x)` with `f(0)=1` and `g(x)` be the function satisfying `f(x)+g(x)=x^2`. Then the value of integral `int_0^1 f(x)g(x)dx` is equal to (A) `(e-2)/4` (B) `(e-3)/2` (C) `(e-4)/2` (D) none of these

A

`e-(1)/(2)e^(2) -(5)/(2)`

B

`e-e^(2)-3`

C

`(1)/(2)(e-3)`

D

`e-(1)/(2) e^(2) - (3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a function that satisfies f(x)+g(x)=x^(2). Then the value of the integral int_(0)^(1)f(x)g(x)dx, is

If a function f(x) satisfies f'(x)=g(x) . Then, the value of int_(a)^(b)f(x)g(x)dx is

If f(x) and g(x) are continuous functions satisfying f(x)=f(a-x) and g(x)+g(a-x)=2 then what is int_0^a f(x) g(x) dx equal to

Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3), g(4-x)+g(x)=0 , then the value of int_(-4)^(4)f(x^(2))dx is :

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(f(x))/(3+4f(x))dx is equal to

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. The value of lim(n to oo) sum(r=1)^(r=4n) (sqrtn)/(sqrt(r(3sqrtr+4sqrt...

    Text Solution

    |

  2. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  3. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  4. Let f(x)=int0^g(x) dx/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  5. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  6. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  7. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  8. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx, where 'a' is positiv...

    Text Solution

    |

  9. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  10. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  11. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  12. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  13. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  14. int(-1/sqrt3)^(-1/sqrt3)(x^4)/(1-x^4)cos^(- 1)((2x)/(1+x^2))dx

    Text Solution

    |

  15. int(0)^(infty)f(x+(1)/(x)). (In x )/(x)dx is equal to

    Text Solution

    |

  16. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  17. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where...

    Text Solution

    |

  18. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  19. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  20. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |