Home
Class 12
MATHS
Suppose I1=int0^(pi/2)cos(pisin^2x)dx a...

Suppose `I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2int_0^3cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx`, then

A

`I_(1)=0`

B

`I_(2)_I_(3)=0`

C

`I_(1)+I_(2)+I_(3)=0`

D

`I_(2)=I_(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Suppose _((pi)/(2))cos(pi sin^(2)x)dx and I_(2)int_(0)^(3)cos(2 pi sin^(2)x)dx and I_(3)=int_(0)^((pi)/(2))cos(pi sin x)dx, then

int_0^(pi//2) x^2 cos 2x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_0^(pi/2) (dx)/(1+cos x)

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

If I_(I)=int_(0)^( pi/2)cos(sin x)dx,I_(2)=int_(0)^((pi)/(2))sin(cos x)d, and I_(3)=int_(0)^((pi)/(2))cos xdx then find the order in which the values I_(1),I_(2),I_(3), exist.

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)

If P = int_(0)^(3pi) f(cos^(2)x)dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then

int _(0) ^(pi) (cos ^(2) x ) dx,

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx