Home
Class 12
MATHS
Let L= lim(nrarr infty) int(a)^(infty)(n...

Let `L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2))`, where `a in R,` then L can be

A

`pi`

B

`pi//2`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let L=lim_(nrarroo)int_a^oo (ndx)/(1+n^2x^2) where a in R then cos L can be (A) -1 (B) 0 (C) 1 (D) 1/2

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

Let lim_(T rarr infty) (1)/(T) int_(0)^(T) ( sin x + sin ax)^(2) dx =L , then

Evaluate int_(0)^(infty) e^(-x)x^(3)dx .

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

0.) The value of int_(0)^(infty)(a)/(x^(2)+a^(2))dx is : "

The limit L=lim_(nrarroo)Sigma_(r=4)^(n-4)(n)/(n^(2)+r^(2)) satisfies the relation