Home
Class 12
MATHS
Let y=f(x) satisfies the equation f(x)=...

Let y=f(x) satisfies the equation `f(x)=(e^(-x)+e^(x)) cosx-2x-int_(0)^(x)(x-t)f'(t)dt.` The value of f'(0)+f''(0)equals to

A

-1

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f'(0) + f''(0) \) given the equation: \[ f(x) = (e^{-x} + e^{x}) \cos x - 2x - \int_{0}^{x} (x - t) f'(t) dt \] ### Step 1: Find \( f(0) \) First, we will evaluate \( f(0) \): \[ f(0) = (e^{0} + e^{0}) \cos(0) - 2(0) - \int_{0}^{0} (0 - t) f'(t) dt \] This simplifies to: \[ f(0) = (1 + 1)(1) - 0 - 0 = 2 \] ### Step 2: Differentiate \( f(x) \) Next, we differentiate both sides of the equation with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left[ (e^{-x} + e^{x}) \cos x - 2x - \int_{0}^{x} (x - t) f'(t) dt \right] \] Using the product rule and the Fundamental Theorem of Calculus, we get: \[ f'(x) = \left( e^{-x} \cos x - e^{-x} \sin x + e^{x} \cos x + e^{x} \sin x \right) - 2 - \left( (x - x) f'(x) + \int_{0}^{x} f'(t) dt \right) \] This simplifies to: \[ f'(x) = (e^{-x} + e^{x}) \cos x - e^{-x} \sin x + e^{x} \sin x - 2 - \int_{0}^{x} f'(t) dt \] ### Step 3: Evaluate \( f'(0) \) Now, we substitute \( x = 0 \): \[ f'(0) = (e^{0} + e^{0}) \cos(0) - e^{0} \sin(0) + e^{0} \sin(0) - 2 - \int_{0}^{0} f'(t) dt \] This simplifies to: \[ f'(0) = (1 + 1)(1) - 0 + 0 - 2 - 0 = 2 - 2 = 0 \] ### Step 4: Differentiate \( f'(x) \) to find \( f''(x) \) Next, we differentiate \( f'(x) \) to find \( f''(x) \): \[ f''(x) = \frac{d}{dx} f'(x) \] Using the previously derived expression for \( f'(x) \): \[ f''(x) = \frac{d}{dx} \left[ (e^{-x} + e^{x}) \cos x - 2 - \int_{0}^{x} f'(t) dt \right] \] This gives us: \[ f''(x) = \left( -e^{-x} \cos x + e^{-x} \sin x + e^{x} \cos x - e^{x} \sin x \right) - f'(x) \] ### Step 5: Evaluate \( f''(0) \) Substituting \( x = 0 \): \[ f''(0) = (-1)(1) + 1(0) + 1(1) - 0 \] This simplifies to: \[ f''(0) = -1 + 0 + 1 - 0 = 0 \] ### Step 6: Calculate \( f'(0) + f''(0) \) Finally, we find: \[ f'(0) + f''(0) = 0 + 0 = 0 \] Thus, the value of \( f'(0) + f''(0) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Differential Equations Exerise 5 :|2 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is