Home
Class 12
MATHS
Find the value of tan[cos^(-1) (1/2) ...

Find the value of
`tan[cos^(-1) (1/2) + tan^(-1) ( - 1/sqrt3)]`

A

`-1/sqrt2 `

B

`-1/sqrt3`

C

`1/sqrt3`

D

`1/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right) \), we can follow these steps: ### Step 1: Identify \( \theta \) for \( \cos^{-1}\left(\frac{1}{2}\right) \) Let \( \theta = \cos^{-1}\left(\frac{1}{2}\right) \). This means that \( \cos(\theta) = \frac{1}{2} \). ### Step 2: Determine the values of sine and tangent From the definition of cosine, we can construct a right triangle where: - The adjacent side (base) is \( 1 \) - The hypotenuse is \( 2 \) Using the Pythagorean theorem, the opposite side (perpendicular) can be calculated as: \[ \text{opposite} = \sqrt{(2^2 - 1^2)} = \sqrt{3} \] Thus, we have: - \( \sin(\theta) = \frac{\sqrt{3}}{2} \) - \( \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{3}}{1} = \sqrt{3} \) ### Step 3: Identify \( \phi \) for \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) Let \( \phi = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \). This means that: \[ \tan(\phi) = -\frac{1}{\sqrt{3}} \] The angle whose tangent is \( -\frac{1}{\sqrt{3}} \) corresponds to \( -30^\circ \) or \( -\frac{\pi}{6} \). ### Step 4: Use the tangent addition formula We need to find: \[ \tan(\theta + \phi) \] Using the tangent addition formula: \[ \tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan(\theta)\tan(\phi)} \] Substituting the values we found: \[ \tan(\theta + \phi) = \frac{\sqrt{3} + \left(-\frac{1}{\sqrt{3}}\right)}{1 - \left(\sqrt{3}\right)\left(-\frac{1}{\sqrt{3}}\right)} \] ### Step 5: Simplify the expression Calculating the numerator: \[ \sqrt{3} - \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \] Calculating the denominator: \[ 1 + 1 = 2 \] Thus, we have: \[ \tan(\theta + \phi) = \frac{\frac{2}{\sqrt{3}}}{2} = \frac{1}{\sqrt{3}} \] ### Final Answer Therefore, the value of \( \tan\left(\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right) \) is: \[ \frac{1}{\sqrt{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan.[cos^(-1)(1/2)+tan^(-1)(-1/(sqrt(3)))]

Find the value of cos^(-1) ((1)/(2)) + tan^(-1) ((1)/(sqrt(3)))

Find the value of : tan^(-1)(- 1/sqrt(3))

Find the value of 2tan^(-1)(1)-cos^(-1)(-1/2)+3sin^(-1)(1/sqrt(2))+2sec^(-1)(2/sqrt(3))

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^(-1)(2)

Find the value of : tan^(-1)((1)/(sqrt(3)))

Find the principal value of cos ec^(-1)(2) and tan^(-1)(-sqrt(3))