Home
Class 12
MATHS
Find the value of cos [cos^(-1) ((-s...

Find the value of
`cos [cos^(-1) ((-sqrt3)/2) + pi/6]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \left[ \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) + \frac{\pi}{6} \right] \), we can follow these steps: ### Step 1: Simplify \( \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) \) We know that \( \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) \) corresponds to an angle in the second quadrant where the cosine value is negative. The angle that satisfies this condition is: \[ \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) = \frac{5\pi}{6} \] ### Step 2: Substitute the angle back into the expression Now we can substitute this value back into our expression: \[ \cos \left[ \frac{5\pi}{6} + \frac{\pi}{6} \right] \] ### Step 3: Combine the angles Adding the angles gives us: \[ \frac{5\pi}{6} + \frac{\pi}{6} = \frac{6\pi}{6} = \pi \] ### Step 4: Calculate the cosine of the resulting angle Now we need to find: \[ \cos(\pi) \] The cosine of \( \pi \) is: \[ \cos(\pi) = -1 \] ### Final Answer Thus, the value of \( \cos \left[ \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) + \frac{\pi}{6} \right] \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate that : cos[cos^(-1) (sqrt(3)/2) + pi/6]

The value of cos[cos^(-1)(-(sqrt(3))/(2))+(pi)/(6))]

Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

Find the principal value of cos^(-1)(-sqrt3/2) .

Find the principal value of cos^(-1)(sqrt3/2) .

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

Find the value of 1 cos(29pi//3)

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

cos {cos ^ (- 1) ((- sqrt (3)) / (2)) + (pi) / (6)}

Find the value of 4cos[cos^(-1)((1)/(4)(sqrt(6)-sqrt(2)))-cos^(-1)((1)/(4)(sqrt(6)+sqrt(2)))] .