Home
Class 12
MATHS
Evaluate the following (i) sin ( pi/2 ...

Evaluate the following
`(i) sin ( pi/2 - sin^(-1) ( (-1)/2))`
(ii) ` sin(pi/2 - sin^(-1)(- sqrt3/2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the given expressions, we will use some properties of inverse trigonometric functions and trigonometric identities. Let's solve each part step by step. ### Part (i): Evaluate `sin(π/2 - sin^(-1)(-1/2))` 1. **Use the identity for inverse sine**: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Therefore, we can rewrite: \[ \sin^{-1}(-1/2) = -\sin^{-1}(1/2) \] 2. **Evaluate \(\sin^{-1}(1/2)\)**: The value of \(\sin^{-1}(1/2)\) is \(\pi/6\) because \(\sin(\pi/6) = 1/2\). 3. **Substitute back**: \[ \sin^{-1}(-1/2) = -\pi/6 \] 4. **Substitute into the original expression**: \[ \sin\left(\frac{\pi}{2} - \left(-\frac{\pi}{6}\right)\right) = \sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right) \] 5. **Combine the angles**: \[ \frac{\pi}{2} + \frac{\pi}{6} = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] 6. **Evaluate \(\sin(2\pi/3)\)**: \(\sin(2\pi/3) = \sin(\pi - \pi/3) = \sin(\pi/3) = \frac{\sqrt{3}}{2}\). Thus, the answer for part (i) is: \[ \sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{1}{2}\right)\right) = \frac{\sqrt{3}}{2} \] --- ### Part (ii): Evaluate `sin(π/2 - sin^(-1)(-sqrt(3)/2))` 1. **Use the identity for inverse sine**: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Therefore, we can rewrite: \[ \sin^{-1}(-\sqrt{3}/2) = -\sin^{-1}(\sqrt{3}/2) \] 2. **Evaluate \(\sin^{-1}(\sqrt{3}/2)\)**: The value of \(\sin^{-1}(\sqrt{3}/2)\) is \(\pi/3\) because \(\sin(\pi/3) = \sqrt{3}/2\). 3. **Substitute back**: \[ \sin^{-1}(-\sqrt{3}/2) = -\pi/3 \] 4. **Substitute into the original expression**: \[ \sin\left(\frac{\pi}{2} - \left(-\frac{\pi}{3}\right)\right) = \sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right) \] 5. **Combine the angles**: \[ \frac{\pi}{2} + \frac{\pi}{3} = \frac{3\pi}{6} + \frac{2\pi}{6} = \frac{5\pi}{6} \] 6. **Evaluate \(\sin(5\pi/6)\)**: \(\sin(5\pi/6) = \sin(\pi - \pi/6) = \sin(\pi/6) = \frac{1}{2}\). Thus, the answer for part (ii) is: \[ \sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\sqrt{3}/2\right)\right) = \frac{1}{2} \] --- ### Summary of Answers: (i) \(\frac{\sqrt{3}}{2}\) (ii) \(\frac{1}{2}\) ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate (i) sin [(pi/3 - sin^(-1)(-1/2)]

Find the value of the following sin[pi/3 - sin^(-1) . (1/2)]

Evaluate : sin[pi/2 - sin^(-1) (- sqrt(3)/2)]

sin(pi/6-sin^(-1)(-1/2))=?

sin [(pi) / (3) -sin ^ (- 1) (- (1) / (2))]

Evaluate sin{pi/2-sin^(-1)(-sqrt(3)/2)} .

Evaluate the following (i) sin^(-1)( sin.( (-3pi)/4))" "(ii) cot^(-1) ( cot(-4))

Find the principal value of each of the following :(i)(sin^(-1)1)/(2)-2(sin^(-1)1)/(sqrt(2))( ii) sin^(-1){cos(sin^(-1)(sqrt((3)/(2)))}^(sqrt(2))

[(sin pi) / (3) -sin ^ (- 1) (- (1) / (2))]