Home
Class 12
MATHS
Prove that tan ^(-1)(1/5) + tan^(-1)(1/...

Prove that `tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1) (1/8) +tan^(-1) (1/5) =tan^(-1) (1/3)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that tan^(-1). 1/7 + tan^(-1). 1/13 = tan^(-1). 2/9

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9

Prove that 2tan^(-1) . 1/5 +tan^(-1). 1/4 = tan^(-1) . 32/43

Prove that tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)