Home
Class 12
MATHS
If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)...

If `x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r))` is equal to `pi` (b) `pi/2` (c) 0 (d) none of these

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+z^(2)=r^(2), thentan ^(-1)((xy)/(zr))+tan^(-1)((yz)/(xr))+tan^(-1)((xz)/(yr)) is equal to pi(b)(pi)/(2)(c)0(d) none of these

If x^(2)+y^(2)+z^(2)=r^(2) and x,y,z>0, then tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xz))+tan^(-1)((zx)/(yr)) is equal to

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If x<0,\ y<0 such that x y=1 , then tan^(-1)x+tan^(-1)y equals pi/2 (b) -pi/2 (c) pi (d) none of these

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz