Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, sho...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=pi`, show that `x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)`

Text Solution

Verified by Experts

The correct Answer is:
`=2 ( x^(2) y^(2) + y^(2)z^(2)+z^(2)x^(2))`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x+sin^-1 y+sin^-1 z= pi prove that: x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^20

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, then x^(4)+y^(2)+z^(4)+4x^(2)y^(2)z^(2)=K(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) where K is equal to 1( b) 2(c)4(d) none of these

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, show that x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ ( 2) y ^ (2) z ^ (2) = 2 (x ^ (2) y ^ (2) + y ^ (2) z ^ (2) + z ^ (2) x ^ (2))

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi show that, x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ ( 2) y ^ (2) z ^ (2) = 2 (x ^ (2) y ^ (2) + y ^ (2) z ^ (2) + z ^ (2) x ^ (2))

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi then x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ (2) y ^ (2) z ^ (2)

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi then x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ (2) y ^ (2) z ^ (2) =

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz