Home
Class 12
MATHS
If sin^(-1) x + sin^(-1) y + sin^(-1) z ...

If `sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi \), then \( x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2} = 2xyz \), we will follow these steps: ### Step 1: Set up the equations Let: \[ a = \sin^{-1} x, \quad b = \sin^{-1} y, \quad c = \sin^{-1} z \] Given that: \[ a + b + c = \pi \] ### Step 2: Use the identity for sine From the identity for sine, when \( a + b + c = \pi \): \[ \sin^2 a + \sin^2 b + \sin^2 c = 4 \sin a \sin b \sin c \] ### Step 3: Substitute sine values We know: \[ \sin a = x, \quad \sin b = y, \quad \sin c = z \] Thus, we can rewrite the identity as: \[ x^2 + y^2 + z^2 = 4xyz \sin a \sin b \sin c \] ### Step 4: Express sine in terms of cosine Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos a = \sqrt{1 - x^2}, \quad \cos b = \sqrt{1 - y^2}, \quad \cos c = \sqrt{1 - z^2} \] ### Step 5: Substitute into the identity Now substituting the values of sine and cosine into the identity: \[ x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2} = 2xyz \] ### Step 6: Final expression Thus, we have: \[ x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2} = 2xyz \] ### Conclusion This completes the proof. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1 .

sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = (pi) / (2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then the value of xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))