Home
Class 12
MATHS
If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) ...

If `(sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)`

A

` - pi^(2)`

B

`- pi^(2)/2`

C

0

D

` pi^(2)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the equation: \[ (\sin^{-1} a)^2 + (\cos^{-1} b)^2 + (\sec^{-1} c)^2 + (\csc^{-1} d)^2 = \frac{5\pi^2}{2} \] We are required to find the value of: \[ (\sin^{-1} a)^2 - (\cos^{-1} b)^2 + (\sec^{-1} c)^2 - (\csc^{-1} d)^2 \] ### Step-by-Step Solution: 1. **Identify the Maximum Values**: - The maximum value of \(\sin^{-1} a\) is \(\frac{\pi}{2}\). - The maximum value of \(\cos^{-1} b\) is \(\pi\). - The maximum value of \(\sec^{-1} c\) is \(\frac{\pi}{2}\). - The maximum value of \(\csc^{-1} d\) is \(\pi\). 2. **Calculate Maximum Values Squared**: - \((\sin^{-1} a)^2\) can be at most \(\left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4}\). - \((\cos^{-1} b)^2\) can be at most \(\pi^2\). - \((\sec^{-1} c)^2\) can be at most \(\left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4}\). - \((\csc^{-1} d)^2\) can be at most \(\pi^2\). 3. **Sum of Maximum Values**: - The maximum sum of these squares is: \[ \frac{\pi^2}{4} + \pi^2 + \frac{\pi^2}{4} + \pi^2 = \frac{\pi^2}{4} + \frac{4\pi^2}{4} + \frac{\pi^2}{4} = \frac{6\pi^2}{4} = \frac{3\pi^2}{2} \] 4. **Given Equation**: - We know from the problem statement that: \[ (\sin^{-1} a)^2 + (\cos^{-1} b)^2 + (\sec^{-1} c)^2 + (\csc^{-1} d)^2 = \frac{5\pi^2}{2} \] 5. **Setting Up the Expression**: - Now we need to evaluate: \[ (\sin^{-1} a)^2 - (\cos^{-1} b)^2 + (\sec^{-1} c)^2 - (\csc^{-1} d)^2 \] 6. **Substituting Maximum Values**: - Let’s denote: \[ x = (\sin^{-1} a)^2, \quad y = (\cos^{-1} b)^2, \quad z = (\sec^{-1} c)^2, \quad w = (\csc^{-1} d)^2 \] - From the given equation, we have: \[ x + y + z + w = \frac{5\pi^2}{2} \] 7. **Using Maximum Values**: - Substitute the maximum values into the expression: \[ \frac{\pi^2}{4} - \pi^2 + \frac{\pi^2}{4} - \pi^2 \] - This simplifies to: \[ \frac{\pi^2}{4} + \frac{\pi^2}{4} - \pi^2 - \pi^2 = \frac{\pi^2}{2} - 2\pi^2 = -\frac{3\pi^2}{2} \] 8. **Final Calculation**: - Since we are looking for the difference: \[ 0 \] ### Conclusion: Thus, the value of the expression \[ (\sin^{-1} a)^2 - (\cos^{-1} b)^2 + (\sec^{-1} c)^2 - (\csc^{-1} d)^2 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If sec^(-1)(2) +"cosec"^(-1) (y) = pi/2 , then find y .

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

The principal value of sec^(-1)(sqrt(2)) + cosec^(-1)(2) is

Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

" (1) sec^(2)A+cosec^(2)A=sec^(2)A*cosec^(2)A

If sin A+sin^(2)A=1, then the value of cos^(2)A+cos^(4)A is 2(b)1(c)-2(d)0

If A = 5^(@) then the value of expression (( secA)/((1 - 4sin^(2)A)) + (cosec A)/((4 cos^(2)A -1)))^(2) is :

sec^(2)(tan^(-1)2) + "cosec"^(2)(cot^(-1)3)=

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is