Home
Class 12
MATHS
If f ( x) = cos^(-1) ( cos ( x + 1) ) "...

If ` f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2))`, then

A

`f(1) + g (1) = ( pi -1)`

B

`f (1) gt g(1)`

C

` f(2) gt g (2) `

D

`f(2) lt g (2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

1- (sin ^ (2) x) / (1 + cos x) + (1 + cos x) / (sin x) - (sin x) / (1-cos x) =

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

((1) / ((sec x) ^ (2) - (cos x) ^ (2)) + (1) / ((cos ecx) ^ (2) - (sin x) ^ (2))) ( cos x) ^ (2) (sin x) ^ (2) = (1- (cos x) ^ (2) (sin x) ^ (2)) / (2+ (cos x) ^ (2) (sin x) ^ (2))

f(x)=sin^(-1)(sin x), g(x)=cos^(-1)(cos x) , then :

f(x)=(cos^(2)x)/(1+cos x+cos^(2)x) and g(x)=k tan x+(1-k)sin x-x, where k in R,g'(x)=

If f(x) = (1+sin x - cos x)/(1- sin x - cos x ) , x != 0 is continuous at x = 0 , then : f(0) =