Home
Class 12
MATHS
Let x(1) " and " x(2) ( x(1) gt x(2)) be...

Let `x_(1) " and " x_(2) ( x_(1) gt x_(2))` be roots of the equation `sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 `, then

A

` sin ^(-1). 1/x^(1) + cos ^(-1). 1/x_(2) = pi`

B

`sin^(-1) ( 1/x_(1)) + cos ^(-1) ( 1/x_(2)) = 0 `

C

` sin ^(-1) . 1/x_(1) + sin ^(-1) ( 1/x_(2)) = 0 `

D

` cos^(-1) ( 1/x_(1)) + cos^(-1) ( 1/x_(2)) = pi `

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

2tan^(-1)(cos x)=tan^(-1)(csc^(2)x), then x=

The number of solutions of cos(2sin^(-1)(cot(tan^(-1)(sec(6csc^(-1)x))))+1=0 where x>0 is

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

If: 2.tan^(-1)(cos x) = tan^(-1)(cosec^(2)x) , then: x=

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0