Home
Class 12
MATHS
Statement I If tan^(-1) x + tan^(-1) y ...

Statement I If ` tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 ` , then arithmetic mean of odd powers of x, y, z is equal to 1/3 .
Statement II For any x, y, z we have
` xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1) `

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1