Home
Class 12
MATHS
Find the value of sin^(-1) ( cos. ( 33p...

Find the value of ` sin^(-1) ( cos. ( 33pi)/5)` .

A

`-pi/5`

B

`-pi/10`

C

`pi/5`

D

`pi/10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1} \left( \cos \left( \frac{33\pi}{5} \right) \right) \), we can follow these steps: ### Step 1: Simplify the angle \( \frac{33\pi}{5} \) First, we simplify \( \frac{33\pi}{5} \) by finding an equivalent angle within the range of \( [0, 2\pi) \). \[ \frac{33\pi}{5} = 6\pi + \frac{3\pi}{5} \] Since \( 6\pi \) is a multiple of \( 2\pi \), we can subtract \( 6\pi \) to find the equivalent angle: \[ \frac{33\pi}{5} - 6\pi = \frac{33\pi}{5} - \frac{30\pi}{5} = \frac{3\pi}{5} \] ### Step 2: Use the cosine identity Now we can rewrite the cosine function: \[ \cos\left(\frac{33\pi}{5}\right) = \cos\left(\frac{3\pi}{5}\right) \] ### Step 3: Find \( \sin^{-1} \left( \cos\left(\frac{3\pi}{5}\right) \right) \) Next, we need to evaluate \( \sin^{-1} \left( \cos\left(\frac{3\pi}{5}\right) \right) \). Using the identity \( \cos\theta = \sin\left(\frac{\pi}{2} - \theta\right) \): \[ \cos\left(\frac{3\pi}{5}\right) = \sin\left(\frac{\pi}{2} - \frac{3\pi}{5}\right) \] ### Step 4: Calculate \( \frac{\pi}{2} - \frac{3\pi}{5} \) Now we calculate: \[ \frac{\pi}{2} - \frac{3\pi}{5} = \frac{5\pi}{10} - \frac{6\pi}{10} = -\frac{\pi}{10} \] ### Step 5: Substitute back into the sine inverse Now we can substitute this back into our expression: \[ \sin^{-1} \left( \cos\left(\frac{3\pi}{5}\right) \right) = \sin^{-1} \left( \sin\left(-\frac{\pi}{10}\right) \right) \] ### Step 6: Evaluate \( \sin^{-1} \left( \sin\left(-\frac{\pi}{10}\right) \right) \) Since \( -\frac{\pi}{10} \) is within the range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), we have: \[ \sin^{-1} \left( \sin\left(-\frac{\pi}{10}\right) \right) = -\frac{\pi}{10} \] ### Final Answer Thus, the value of \( \sin^{-1} \left( \cos \left( \frac{33\pi}{5} \right) \right) \) is: \[ \boxed{-\frac{\pi}{10}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(cos(pi/5))

Find the value of cos^(-1) ( cos . (2pi)/3) + sin^(-1) ( sin . (2pi)/3) .

The value of sin^(-1)(cos.(53pi)/(5)) is

Find the value of: i) sin ^(-1)(sin (3pi)/5) , ii) cos^(-1)(cos(13pi)/6) , iii) tan^(-1)(tan (7pi)/6) .

Find the value of sin^(-1) (sin. (4pi)/5)

The value of sin^(-1)(cos""(3pi)/(5)) is

Find the value of : sin ^(-1)(sin ((5pi )/(4)) )

Find the value of sin^(-1)((sin(3 pi))/(5))