Home
Class 12
MATHS
Evaluate the following : sin ^(2) ( co...

Evaluate the following :
`sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) ` .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \), we can follow these steps: ### Step 1: Evaluate \( \cos^{-1}(1/2) \) We know that \( \cos(\pi/3) = 1/2 \). Therefore, we have: \[ \cos^{-1}(1/2) = \frac{\pi}{3} \] **Hint:** Recall the values of cosine for standard angles to find the angle whose cosine is \( 1/2 \). ### Step 2: Find \( \sin^2(\cos^{-1}(1/2)) \) Using the identity \( \sin^2(x) + \cos^2(x) = 1 \), we can find: \[ \sin^2(\cos^{-1}(1/2)) = \sin^2\left(\frac{\pi}{3}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] **Hint:** Use the Pythagorean identity to find the sine of the angle. ### Step 3: Evaluate \( \sin^{-1}(1/3) \) Let \( \theta = \sin^{-1}(1/3) \). This means: \[ \sin(\theta) = \frac{1}{3} \] ### Step 4: Find \( \cos(\theta) \) Using the Pythagorean identity again, we can find \( \cos(\theta) \): \[ \cos^2(\theta) = 1 - \sin^2(\theta) = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Thus, \[ \cos(\theta) = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \] **Hint:** Remember to apply the Pythagorean theorem to find the adjacent side in a right triangle. ### Step 5: Find \( \cos^2(\sin^{-1}(1/3)) \) Now we can calculate: \[ \cos^2(\sin^{-1}(1/3)) = \left(\frac{2\sqrt{2}}{3}\right)^2 = \frac{8}{9} \] **Hint:** Square the value of cosine you just found. ### Step 6: Combine the results Now we can sum the two parts: \[ \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) = \frac{3}{4} + \frac{8}{9} \] ### Step 7: Find a common denominator and add The common denominator for \( 4 \) and \( 9 \) is \( 36 \): \[ \frac{3}{4} = \frac{27}{36}, \quad \frac{8}{9} = \frac{32}{36} \] Thus, \[ \frac{27}{36} + \frac{32}{36} = \frac{59}{36} \] ### Final Answer The value of the expression is: \[ \boxed{\frac{59}{36}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Find the principal values of the following : tan^(-1) (1) +cos^(-1) (-1/2) +sin^(-1) (-1/2)

Evaluate following 1. sin(cos^(-1) 3//5) 2. cos(tan^(-1)3//4) 3. sin(pi/2-sin^(-1) (-1/2))

For the principal values,evaluate each of the following :(cos^(-1)1)/(2)+2(sin^(-1)1)/(2) (ii) cos^(-1)((1)/(2))-2sin^(-1)(-(1)/(2))

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

Find the principal values of the following : cos^(-1)(1/2) +2 sin^(-1) (1/2)

Evaluate the following: 1*sin^(-1)(sin(2 pi)/(3))2cos^(-1)(cos(7 pi)/(6))3*tan^(-1)(tan(2 pi)/(3))

Evaluate : tan^(-1) (2 cos ( 2 sin^(-1) (1/2)))

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]

sin(sin^(-1)(1)/(2)+cos^(-1)(1)/(2))

cos^(2)(sin^(-1)(1/6))+sin^(2)(cos^(-1)(1/2))