Home
Class 12
MATHS
If sec^(-1) x = cosec^(-1) y , then fin...

If ` sec^(-1) x = cosec^(-1) y `, then find the value of ` cos^(-1) . 1/x + cos ^(-1) . 1/y`.

Text Solution

Verified by Experts

The correct Answer is:
`pi/2`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If sec^(-1)x=csc^(-1)y, then find the value of cos^(-1)(1)/(x)+cos^(-1)(1)/(y)

Find the value of cos(sec^(-1)x+cos ec^(-1)x),|x|>=1

If sec^(-1)(2) +"cosec"^(-1) (y) = pi/2 , then find y .

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

Find the value of cos(sec^(-1)x+"c o s e c"^(-1)x) , |x|geq1

Find the value of (1+cos A)(1-cos A)cosec^(2)A .

If -1<=x,y<=1 such that sin^(-1)x+sin^(-1)y=(pi)/(2), find the value of cos^(-1)x+cos^(-1)y

If -1<=x,y<=1 such that sin^(-1)x+sin^(-1)y=(pi)/(2), find the value of cos^(-1)x+cos^(-1)y

Find the maximum value of (sec^(-1) x) (cosec^(-1) x), x ge 1