Home
Class 12
MATHS
Prove that tan^(-1) x + tan ^(-1). 1/x =...

Prove that `tan^(-1) x + tan ^(-1). 1/x = {{:(pi//2", if " x gt 0),(-pi//2", if "x lt 0 ):}`.

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

prove that tan^(-1)x+cot^(-1)x=pi/2

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0