Home
Class 12
MATHS
Solve the following 5 tan^(-1) x + 3...

Solve the following
` 5 tan^(-1) x + 3 cot^(-1) x = 2 pi `

Text Solution

Verified by Experts

The correct Answer is:
` x = 1`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

3tan^(-1)x+cot^(-1)x=pi

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

If: tan^(-1)x + 2cot^(-1)x = (2pi)/3 , then: x=

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

Solve tan^(-1)2x + tan^(-1)3x = pi/4

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4