Home
Class 12
MATHS
tan^(-1)((3x-x^(3))/(1-3x^(2)))...

`tan^(-1)((3x-x^(3))/(1-3x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`y = tan^(-1) ((3x-x^(3))/(1-3x^(2)))={{:(3 tan^(-1)x,;,1/sqrt3 lt x lt 1/sqrt3),(pi + 3 tan^(-1)x,;,-infty lt x lt - 1/sqrt3),(-pi + 3 tan^(-1) x,;,1/sqrt3 lt xlt infty):}`
Graph of ` y = tan^(-1) ((3x-x^(3))/(1 - 3x^(2)))`
`(##ARH_AMA_TRI_C04_E07_002_A01##)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|70 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

tan^(-1)((sqrt(x)(3-x))/(1-3x))

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2))) where |x|<(1)/(sqrt(3))* Then a value of y is : (1)(3x-x^(3))/(1-3x^(2))(2)(3x+x^(3))/(1-3x^(2))(3)(3x-x^(3))/(1+3x^(2))(4)(3x+x^(3))/(1+3x^(2))

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

Derivative of tan ^(-1) ""((x)/(sqrt(1-x^(2)))) with respect sin ^(-1) ( 3x - 4x^(3)) is

Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^(2))+tan^(-1)(2+3x)/(3-2x)

tan x+tan(x+(pi)/(3))+tan(x+2(pi)/(3))=3 prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

If tan x+tan(x+(pi)/(3))+tan(x+(2 pi)/(3))=3 then prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1