Home
Class 12
MATHS
If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(...

If `tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4`where a, b, c , are the sides of `Delta ABC",then" Delta ABC` is

A

Acute - angled triangle

B

Obtuse - angled triangle

C

Right- angled triangle

D

Equilateral triangle

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given: \[ \tan^{-1}\left(\frac{b}{c+a}\right) + \tan^{-1}\left(\frac{c}{a+b}\right) = \frac{\pi}{4} \] We will use the property of the tangent inverse function, which states: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 \] ### Step 1: Apply the tangent addition formula Let \( x = \frac{b}{c+a} \) and \( y = \frac{c}{a+b} \). According to the formula: \[ \tan^{-1}\left(\frac{b}{c+a}\right) + \tan^{-1}\left(\frac{c}{a+b}\right) = \tan^{-1}\left(\frac{\frac{b}{c+a} + \frac{c}{a+b}}{1 - \frac{b}{c+a} \cdot \frac{c}{a+b}}\right) \] ### Step 2: Simplify the numerator The numerator becomes: \[ \frac{b}{c+a} + \frac{c}{a+b} = \frac{b(a+b) + c(c+a)}{(c+a)(a+b)} = \frac{ba + b^2 + c^2 + ac}{(c+a)(a+b)} \] ### Step 3: Simplify the denominator The denominator becomes: \[ 1 - \frac{bc}{(c+a)(a+b)} = \frac{(c+a)(a+b) - bc}{(c+a)(a+b)} = \frac{(c+a)(a+b) - bc}{(c+a)(a+b)} \] ### Step 4: Set the equation equal to \(\tan^{-1}(1)\) Since \(\tan^{-1}(1) = \frac{\pi}{4}\), we have: \[ \tan^{-1}\left(\frac{ba + b^2 + c^2 + ac}{(c+a)(a+b) - bc}\right) = \tan^{-1}(1) \] This implies: \[ \frac{ba + b^2 + c^2 + ac}{(c+a)(a+b) - bc} = 1 \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ ba + b^2 + c^2 + ac = (c+a)(a+b) - bc \] Expanding the right side: \[ (c+a)(a+b) = ac + ab + bc + a^2 \] Thus, we have: \[ ba + b^2 + c^2 + ac = ac + ab + bc + a^2 - bc \] ### Step 6: Rearranging terms Rearranging gives: \[ b^2 + c^2 = ab + a^2 \] ### Step 7: Recognizing the triangle condition The equation \( b^2 + c^2 = a^2 \) indicates that triangle ABC is a right triangle (specifically, angle A is 90 degrees). ### Conclusion Thus, the triangle ABC is a right triangle. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

If tan A and tan B are the roots of abx^(2)-c^(2)x+ab=0 where a,b,c are the sides of the triangle ABC then the value of sin^(2)A+sin^(2)B+sin^(2)C is

in Delta ABC,tan(A-B-C)=

In Delta ABC,tan(A-B-C)=

If Delta = a^(2)-(b-c)^(2), Delta is the area of the Delta ABC then tan A = ?

If cos theta=(a)/(b+c),cos phi=(b)/(a+c) and cos psi=(c)/(a+b) where theta,phi,psi in(0,pi) and a,b,c are sides of triangle ABC then tan^(2)((theta)/(2))+tan^(2)((phi)/(2))+tan^(2)((psi)/(2))=

In a Delta ABC ,if 3 tan (A/2) tan (C/2)=1 then a,b,c are in

If angle C of triangle ABC is 90^(@) ,then prove that tan A+tan B=(c^(2))/(ab) (where,a,b,c, are sides opposite to angles A,B,C, respectively).

If tan (x-A)tan (x-B)+tan (x-B)tan (x-C)+tan(x-C)tan (x-A)=1 and A,B and C are the angles of triangle ABC then find x

ARIHANT MATHS-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f(x) = tan^(-1) (x^2-18x + a) gt 0 x in R. Then the value of a lie...

    Text Solution

    |

  2. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  3. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  4. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  5. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  6. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  7. cos^(-1) ( cos( 2 cot^(-1)(sqrt2 - 1)))is equal to

    Text Solution

    |

  8. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^2+2x^2+3)) is ...

    Text Solution

    |

  9. If tan^(-1) .(sqrt(1+x^(2))-1)/x = 4^(@) , then

    Text Solution

    |

  10. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  11. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  12. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  13. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  14. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  15. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  16. Which one of the following statement is meaningless ?

    Text Solution

    |

  17. The vale of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  18. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  19. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  20. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |