Home
Class 12
MATHS
cos^(-1) ( cos( 2 cot^(-1)(sqrt2 - 1)))i...

`cos^(-1) ( cos( 2 cot^(-1)(sqrt2 - 1)))`is equal to

A

`sqrt2 - 1`

B

`pi/4`

C

`(3pi)/4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - 1))) \), we will follow these steps: ### Step 1: Simplify \( 2 \cot^{-1}(\sqrt{2} - 1) \) We start by letting \( x = \cot^{-1}(\sqrt{2} - 1) \). Therefore, we have: \[ \cot(x) = \sqrt{2} - 1 \] To find \( \tan(x) \), we use the identity \( \tan(x) = \frac{1}{\cot(x)} \): \[ \tan(x) = \frac{1}{\sqrt{2} - 1} \] Next, we rationalize the denominator: \[ \tan(x) = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1 \] ### Step 2: Use the double angle formula for tangent Now, we can find \( 2 \cot^{-1}(\sqrt{2} - 1) \): \[ 2 \cot^{-1}(\sqrt{2} - 1) = 2 \tan^{-1}(\sqrt{2} + 1) \] Using the double angle formula for tangent: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( \theta = \tan^{-1}(\sqrt{2} + 1) \): \[ \tan(2\theta) = \frac{2(\sqrt{2} + 1)}{1 - (\sqrt{2} + 1)^2} \] Calculating \( (\sqrt{2} + 1)^2 \): \[ (\sqrt{2} + 1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \] Thus, \[ 1 - (\sqrt{2} + 1)^2 = 1 - (3 + 2\sqrt{2}) = -2 - 2\sqrt{2} \] Now substituting back: \[ \tan(2\theta) = \frac{2(\sqrt{2} + 1)}{-2 - 2\sqrt{2}} = -\frac{\sqrt{2} + 1}{1 + \sqrt{2}} = -1 \] ### Step 3: Find the angle corresponding to \( \tan(2\theta) = -1 \) The angle whose tangent is -1 is: \[ 2\theta = \frac{3\pi}{4} \quad \text{(since it is in the second quadrant)} \] ### Step 4: Find \( \theta \) Thus, \[ \theta = \frac{3\pi}{8} \] ### Step 5: Substitute back into the original expression Now we substitute back to find: \[ \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - 1))) = \cos^{-1}(\cos(\frac{3\pi}{4})) \] Since \( \cos^{-1}(\cos(x)) = x \) for \( x \) in the range \( [0, \pi] \), we have: \[ \cos^{-1}(\cos(\frac{3\pi}{4})) = \frac{3\pi}{4} \] ### Final Answer Thus, the final answer is: \[ \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(cos(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1( b) (pi)/(4)(c)(3 pi)/(4) (d) none of these

cos^(-1)(cos(2cot^(-1)(sqrt(2)-1)))

cos^(-1){cos2cot^(-1)(sqrt(2)-1)}

(tan^(-1)(sqrt3)-sec^(-1)(-2))/(cosec^(-1)(-sqrt2)+cos^(-1)(-(1)/(2))) is equal to

sin^(-1)(1/2)+cos^(-1)(1/sqrt2)=?

If 0

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

ARIHANT MATHS-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  2. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  3. cos^(-1) ( cos( 2 cot^(-1)(sqrt2 - 1)))is equal to

    Text Solution

    |

  4. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^2+2x^2+3)) is ...

    Text Solution

    |

  5. If tan^(-1) .(sqrt(1+x^(2))-1)/x = 4^(@) , then

    Text Solution

    |

  6. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  7. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  8. For any real number x ge 1, the expression sec^(2) ( tan^(-1)x) - ...

    Text Solution

    |

  9. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x...

    Text Solution

    |

  10. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  11. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  12. Which one of the following statement is meaningless ?

    Text Solution

    |

  13. The vale of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  14. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |

  15. The value of Sigma( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) ,...

    Text Solution

    |

  16. If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 c...

    Text Solution

    |

  17. Find the value of tan^(-1)(1/2tan2A)+tan^(-1)(cotA)+tan^(-1)(cot^3A),f...

    Text Solution

    |

  18. sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) is equal to (A) tan ^-1 (2)+t...

    Text Solution

    |

  19. Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-...

    Text Solution

    |

  20. There exists a positive real number x satisfying cos ( tan^(-1)x) = ...

    Text Solution

    |