Home
Class 10
MATHS
If alphaandbeta are the roots of the qua...

If `alphaandbeta` are the roots of the quadratic equation `x^(2)-4x-6=0`, find the vlaues of
`alpha^(3)+beta^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^3 + \beta^3 \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 - 4x - 6 = 0 \), we can follow these steps: ### Step 1: Identify the coefficients The given quadratic equation is in the form \( ax^2 + bx + c = 0 \). Here, \( a = 1 \), \( b = -4 \), and \( c = -6 \). ### Step 2: Calculate the sum and product of the roots Using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = -\frac{-4}{1} = 4 \). - The product of the roots \( \alpha \beta = \frac{c}{a} = \frac{-6}{1} = -6 \). ### Step 3: Use the identity for \( \alpha^3 + \beta^3 \) We can use the identity: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha \beta + \beta^2) \] We need to find \( \alpha^2 + \beta^2 \) first. ### Step 4: Calculate \( \alpha^2 + \beta^2 \) Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \] Substituting the values we found: \[ \alpha^2 + \beta^2 = (4)^2 - 2(-6) = 16 + 12 = 28 \] ### Step 5: Substitute into the identity for \( \alpha^3 + \beta^3 \) Now we can substitute \( \alpha^2 + \beta^2 \) back into the identity: \[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha \beta) \] Substituting the known values: \[ \alpha^3 + \beta^3 = 4(28 - (-6)) = 4(28 + 6) = 4(34) = 136 \] ### Final Answer Thus, the value of \( \alpha^3 + \beta^3 \) is \( 136 \). ---
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PRACTICE SET 2.1|17 Videos
  • QUADRATIC EQUATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PRACTICE SET 2.2|12 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Challenging Questions|5 Videos
  • QUADRATIC EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise ASSIGNEMENT 2.4|8 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the quadratic equation x^(2) - 4x - 6 = 0 , find the values of alpha^(2) + beta^(2) .

If alpha and beta are the roots of the quadratic equation x^(2) - 2x - 7 = 0 , find the value of alpha^(2) + beta ^(2) .

If alpha,beta are the roots of the quadratic equation x^(2)+ax+b=0, find the value of (alpha^(3)-3)(beta^(3)-3)

If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

If alpha, beta be the roots of the quadratic equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alpha beta :

If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=