Home
Class 11
PHYSICS
A gas is filled in a container at pressu...

A gas is filled in a container at pressure `P_(0)`. If the mass of molecules is halved and their rms speed is doubled, then the resultant pressure would be

A

`2 P_(0)`

B

`4 P_(0)`

C

`(P_(0))/(4)`

D

`(P_(0))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the relationship between pressure, mass of gas molecules, and their root mean square (rms) speed according to the kinetic theory of gases. ### Step-by-Step Solution: 1. **Understanding the Initial Conditions**: - Let the initial pressure of the gas be \( P_0 \). - Let the mass of one molecule of the gas be \( m \). - Let the initial rms speed of the gas be \( v_{\text{rms}} \). 2. **Changes in Conditions**: - The mass of the molecules is halved: \[ m' = \frac{m}{2} \] - The rms speed is doubled: \[ v'_{\text{rms}} = 2 v_{\text{rms}} \] 3. **Using the Kinetic Theory of Gases**: - According to the kinetic theory, the pressure \( P \) of a gas is given by: \[ P \propto \frac{m \cdot v_{\text{rms}}^2}{V} \] - Since the volume \( V \) of the container is constant, we can express the relationship for the new pressure \( P' \) as: \[ P' \propto m' \cdot (v'_{\text{rms}})^2 \] 4. **Substituting the New Values**: - Substitute \( m' \) and \( v'_{\text{rms}} \) into the equation: \[ P' = k \cdot m' \cdot (v'_{\text{rms}})^2 \] - Where \( k \) is a constant of proportionality. Thus: \[ P' = k \cdot \left(\frac{m}{2}\right) \cdot (2 v_{\text{rms}})^2 \] 5. **Calculating \( P' \)**: - Expanding the equation: \[ P' = k \cdot \left(\frac{m}{2}\right) \cdot (4 v_{\text{rms}}^2) \] - Simplifying: \[ P' = k \cdot \frac{m \cdot 4 v_{\text{rms}}^2}{2} = k \cdot 2 m v_{\text{rms}}^2 \] - Since \( k \cdot m v_{\text{rms}}^2 = P_0 \), we have: \[ P' = 2 P_0 \] 6. **Final Result**: - Therefore, the resultant pressure \( P' \) is: \[ P' = 2 P_0 \] ### Conclusion: The resultant pressure after halving the mass of the molecules and doubling their rms speed is \( 2 P_0 \).

To solve the problem, we will use the relationship between pressure, mass of gas molecules, and their root mean square (rms) speed according to the kinetic theory of gases. ### Step-by-Step Solution: 1. **Understanding the Initial Conditions**: - Let the initial pressure of the gas be \( P_0 \). - Let the mass of one molecule of the gas be \( m \). - Let the initial rms speed of the gas be \( v_{\text{rms}} \). ...
Promotional Banner

Topper's Solved these Questions

  • BEHAVIOUR OF PERFECT GAS & KINETIC THEORY

    PRADEEP|Exercise Multiple choice questions-II|8 Videos
  • BEHAVIOUR OF PERFECT GAS & KINETIC THEORY

    PRADEEP|Exercise Multiple choice questions-III|12 Videos
  • BEHAVIOUR OF PERFECT GAS & KINETIC THEORY

    PRADEEP|Exercise Problems for practice|47 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos

Similar Questions

Explore conceptually related problems

A gas in a vessel is at the pressure P_(0) . If the masses of all the molecules be made half and their speeds be made double, then find the resultant pressure.

Gas at a pressure P_(0) in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubles. The resulting pressure P will be equal to

If the mass of each molecule of a gas is halved and speed is doubled. Find the ratio of initial and final pressure.

PRADEEP-BEHAVIOUR OF PERFECT GAS & KINETIC THEORY-Multiple choice questions-I
  1. The molar specific heat of a gas as given from the kinetic theory is (...

    Text Solution

    |

  2. Two vessel separately contains two ideal gases A and B at the same tem...

    Text Solution

    |

  3. A gas is filled in a container at pressure P(0). If the mass of molecu...

    Text Solution

    |

  4. In a mixture of gases, the average number of degrees of freedom per mo...

    Text Solution

    |

  5. Three moles of oxygen ar mixed with two moles of helium. What will be ...

    Text Solution

    |

  6. Four cylinders contain equal number of moles of argon, hydrogen, nitro...

    Text Solution

    |

  7. Oxygen and hydrogen gas are at same temperature and pressure. And the ...

    Text Solution

    |

  8. The average translational energy and the rms speed of molecules in a s...

    Text Solution

    |

  9. The K.E. of one mole of an ideal gas is

    Text Solution

    |

  10. At what temperature is the rms velocity of a hydrogen molecule equal t...

    Text Solution

    |

  11. The molar specific heat at constant pressure of an ideal gas is (7//2 ...

    Text Solution

    |

  12. Two rigid boxes containing different ideal gases are placed on a table...

    Text Solution

    |

  13. Given is the graph between (PV)/T and P for 1 gm of oxygen gas at two ...

    Text Solution

    |

  14. The root mean square velocity of hydrogen molecules at 300 K is 1930 m...

    Text Solution

    |

  15. Two moles of oxygen are mixed with eight moles of helium. The effectiv...

    Text Solution

    |

  16. 1 mole of monoatomic and one mole of diatomic gas are mixed together. ...

    Text Solution

    |

  17. One kg of a diatomic gas is at pressure of 8xx10^4N//m^2. The density ...

    Text Solution

    |

  18. 10 moles of an ideal monoatomic gas at 10^(@)C are mixed with 20 moles...

    Text Solution

    |

  19. Find the temperature at which oxygen molecules would have the same rms...

    Text Solution

    |

  20. Mean free path of a gas molecule is

    Text Solution

    |