Home
Class 12
MATHS
int(0)^(1)(1)/(sqrt(x+3))dx =...

`int_(0)^(1)(1)/(sqrt(x+3))dx =`

A

`4-2sqrt(3)`

B

`2sqrt(3)-4`

C

`4+2sqrt(3)`

D

`4sqrt(3)-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{1}{\sqrt{x+3}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( z = x + 3 \). Then, differentiate both sides: \[ dz = dx \] Now, we need to change the limits of integration. When \( x = 0 \): \[ z = 0 + 3 = 3 \] When \( x = 1 \): \[ z = 1 + 3 = 4 \] Thus, the integral becomes: \[ I = \int_{3}^{4} \frac{1}{\sqrt{z}} \, dz \] ### Step 2: Rewrite the Integral The expression \( \frac{1}{\sqrt{z}} \) can be rewritten as \( z^{-1/2} \): \[ I = \int_{3}^{4} z^{-1/2} \, dz \] ### Step 3: Integrate Using the power rule for integration, where \( \int z^n \, dz = \frac{z^{n+1}}{n+1} + C \), we have: \[ \int z^{-1/2} \, dz = \frac{z^{1/2}}{1/2} = 2z^{1/2} \] Thus, \[ I = \left[ 2\sqrt{z} \right]_{3}^{4} \] ### Step 4: Evaluate the Limits Now, we substitute the limits into the integrated function: \[ I = 2\sqrt{4} - 2\sqrt{3} \] Calculating this gives: \[ I = 2 \cdot 2 - 2\sqrt{3} = 4 - 2\sqrt{3} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{4 - 2\sqrt{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(1+sqrt(x))dx

int_(0)^(1)(1)/(sqrt(3x+2))dx

int_(0)^(1)(1)/(x+sqrt(x))dx=

int_(0)^(1)(1)/(sqrt(x+1))*dx

int_(0)^(1)(1)/(1+sqrt(x))*dx

Evaluate :int_(0)^(1)(1)/(sqrt(2x+3))dx

int_(0)^(1)(x)/(1+sqrt(x))dx

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(2)(1)/(sqrt(x))dx

int_(0)^(7)(1)/(sqrt(4+3x))dx=