Home
Class 12
MATHS
int(0)^(2)(3x^(2)+2x-1)dx=...

`int_(0)^(2)(3x^(2)+2x-1)dx=`

A

7

B

8

C

9

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{0}^{2} (3x^{2} + 2x - 1) \, dx \), we will follow these steps: ### Step 1: Set up the integral Let \( I = \int_{0}^{2} (3x^{2} + 2x - 1) \, dx \). ### Step 2: Use the linearity of integration We can split the integral into three separate integrals: \[ I = \int_{0}^{2} 3x^{2} \, dx + \int_{0}^{2} 2x \, dx - \int_{0}^{2} 1 \, dx \] ### Step 3: Factor out constants Now, we can factor out the constants from the integrals: \[ I = 3 \int_{0}^{2} x^{2} \, dx + 2 \int_{0}^{2} x \, dx - \int_{0}^{2} 1 \, dx \] ### Step 4: Calculate each integral Now, we will calculate each integral separately. 1. **For \( \int_{0}^{2} x^{2} \, dx \)**: \[ \int x^{2} \, dx = \frac{x^{3}}{3} \quad \text{(evaluated from 0 to 2)} \] \[ = \left[ \frac{2^{3}}{3} - \frac{0^{3}}{3} \right] = \frac{8}{3} \] 2. **For \( \int_{0}^{2} x \, dx \)**: \[ \int x \, dx = \frac{x^{2}}{2} \quad \text{(evaluated from 0 to 2)} \] \[ = \left[ \frac{2^{2}}{2} - \frac{0^{2}}{2} \right] = 2 \] 3. **For \( \int_{0}^{2} 1 \, dx \)**: \[ \int 1 \, dx = x \quad \text{(evaluated from 0 to 2)} \] \[ = [2 - 0] = 2 \] ### Step 5: Substitute back into the equation Now substitute these results back into the equation for \( I \): \[ I = 3 \left( \frac{8}{3} \right) + 2(2) - 2 \] \[ = 8 + 4 - 2 \] \[ = 10 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} (3x^{2} + 2x - 1) \, dx = 10 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)(3x^(2)-1)dx

int_(0)^(2)3x^(2)dx is

Evaluate the following integrals as limit of sums: int_(0)^(1)(3x^(2)+2x+1)dx

int_(0)^(1)(3x^(2)+5x)dx

If int_(0)^(1)(3x^(2)+2x+k)dx=0, find the value of k.

If int_(0)^(1)(3x^(2)+2x+k)dx=0, find the value of k.

Evaluate int_(0)^(1)(3x^(2)+2x+1)dx as limit of the sum.

int_(1)^(2)(3x)/(9x^(2)-1)dx

int_(1)^(2)(3x-2)dx

int_(1)^(4)(3x^(2)+2x)dx