Home
Class 12
MATHS
int(0)^(1)(x^(2)+3x+2)/(sqrt(x))dx=...

`int_(0)^(1)(x^(2)+3x+2)/(sqrt(x))dx=`

A

`(23)/(5)`

B

`(32)/(5)`

C

`-(32)/(5)`

D

`(5)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{1} \frac{x^2 + 3x + 2}{\sqrt{x}} \, dx, \] we can break it down into simpler parts using the linearity of integration. ### Step 1: Split the Integral We can separate the integral into three parts: \[ I = \int_{0}^{1} \frac{x^2}{\sqrt{x}} \, dx + 3 \int_{0}^{1} \frac{x}{\sqrt{x}} \, dx + 2 \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx. \] ### Step 2: Simplify Each Integral Now, we simplify each term: 1. For the first integral: \[ \frac{x^2}{\sqrt{x}} = x^{2 - \frac{1}{2}} = x^{\frac{3}{2}}. \] So, \[ \int_{0}^{1} \frac{x^2}{\sqrt{x}} \, dx = \int_{0}^{1} x^{\frac{3}{2}} \, dx. \] 2. For the second integral: \[ \frac{x}{\sqrt{x}} = x^{1 - \frac{1}{2}} = x^{\frac{1}{2}}. \] So, \[ 3 \int_{0}^{1} \frac{x}{\sqrt{x}} \, dx = 3 \int_{0}^{1} x^{\frac{1}{2}} \, dx. \] 3. For the third integral: \[ \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}. \] So, \[ 2 \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx = 2 \int_{0}^{1} x^{-\frac{1}{2}} \, dx. \] ### Step 3: Evaluate Each Integral Now we evaluate each integral using the formula \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C. \] 1. For \(\int_{0}^{1} x^{\frac{3}{2}} \, dx\): \[ = \left[ \frac{x^{\frac{5}{2}}}{\frac{5}{2}} \right]_{0}^{1} = \left[ \frac{2}{5} x^{\frac{5}{2}} \right]_{0}^{1} = \frac{2}{5} (1) - 0 = \frac{2}{5}. \] 2. For \(3 \int_{0}^{1} x^{\frac{1}{2}} \, dx\): \[ = 3 \left[ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{1} = 3 \left[ \frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{1} = 3 \cdot \frac{2}{3} (1) - 0 = 2. \] 3. For \(2 \int_{0}^{1} x^{-\frac{1}{2}} \, dx\): \[ = 2 \left[ \frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{0}^{1} = 2 \cdot 2 \left[ x^{\frac{1}{2}} \right]_{0}^{1} = 4 (1) - 0 = 4. \] ### Step 4: Combine the Results Now, we combine all the results: \[ I = \frac{2}{5} + 2 + 4 = \frac{2}{5} + \frac{10}{5} + \frac{20}{5} = \frac{32}{5}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{32}{5}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)(x^(3)+x+1)/(sqrt(x))dx=

Show int_(0)^(1)(x^(2)dx)/(sqrt(1-x^(3)))=(2)/(3)

int_(0)^(1)(3x^(3)-4x^(2)+1)/(sqrt(x))dx=

int_(0)^(2)(3^(sqrt(x)))/(sqrt(x))dx

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(1)/(x^(2)+sqrt(x))dx

int_(0)^((1)/(2))(1)/(sqrt(3-2x))dx=sqrt(3)-sqrt(2)

Evaluate :int_(0)^(1)(1)/(sqrt(2x+3))dx

int_(0)^(1) (x)/(sqrt(1+x^(2)))dx=?

int_(0)^(1)((3x^(2))/(sqrt(1-x^(6)))+(4x^(3))/(sqrt(1-x^(8)))+(5x^(4))/(sqrt(1-x^(10)))+...." to "n" terms ")dx=