Home
Class 12
MATHS
int(0)^(1)(1)/(sqrt(x+3)+sqrt(x+2))dx=...

`int_(0)^(1)(1)/(sqrt(x+3)+sqrt(x+2))dx=`

A

`(4)/(3)(sqrt(2)-3sqrt(3)+4)`

B

`(2)/(3)(8-6sqrt(3))`

C

`2+sqrt(3)`

D

`(4)/(3)(sqrt(2)+3sqrt(3)-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{1}{\sqrt{x+3} + \sqrt{x+2}} \, dx \), we will follow a series of steps to simplify and evaluate it. ### Step-by-Step Solution: 1. **Set up the integral**: \[ I = \int_{0}^{1} \frac{1}{\sqrt{x+3} + \sqrt{x+2}} \, dx \] 2. **Rationalize the denominator**: Multiply the numerator and denominator by \( \sqrt{x+3} - \sqrt{x+2} \): \[ I = \int_{0}^{1} \frac{\sqrt{x+3} - \sqrt{x+2}}{(\sqrt{x+3} + \sqrt{x+2})(\sqrt{x+3} - \sqrt{x+2})} \, dx \] 3. **Simplify the denominator**: The denominator simplifies as follows: \[ (\sqrt{x+3})^2 - (\sqrt{x+2})^2 = (x+3) - (x+2) = 1 \] Thus, the integral becomes: \[ I = \int_{0}^{1} (\sqrt{x+3} - \sqrt{x+2}) \, dx \] 4. **Separate the integral**: \[ I = \int_{0}^{1} \sqrt{x+3} \, dx - \int_{0}^{1} \sqrt{x+2} \, dx \] 5. **Evaluate the first integral**: Let \( t = x + 3 \) then \( dt = dx \). The limits change from \( x=0 \) to \( t=3 \) and from \( x=1 \) to \( t=4 \): \[ \int_{0}^{1} \sqrt{x+3} \, dx = \int_{3}^{4} \sqrt{t} \, dt = \left[ \frac{2}{3} t^{3/2} \right]_{3}^{4} \] Evaluating this gives: \[ = \frac{2}{3} \left( 4^{3/2} - 3^{3/2} \right) = \frac{2}{3} \left( 8 - 3\sqrt{3} \right) \] 6. **Evaluate the second integral**: Let \( z = x + 2 \) then \( dz = dx \). The limits change from \( x=0 \) to \( z=2 \) and from \( x=1 \) to \( z=3 \): \[ \int_{0}^{1} \sqrt{x+2} \, dx = \int_{2}^{3} \sqrt{z} \, dz = \left[ \frac{2}{3} z^{3/2} \right]_{2}^{3} \] Evaluating this gives: \[ = \frac{2}{3} \left( 3^{3/2} - 2^{3/2} \right) = \frac{2}{3} \left( 3\sqrt{3} - 2\sqrt{2} \right) \] 7. **Combine the results**: \[ I = \frac{2}{3} \left( 8 - 3\sqrt{3} \right) - \frac{2}{3} \left( 3\sqrt{3} - 2\sqrt{2} \right) \] Simplifying this: \[ I = \frac{2}{3} \left( 8 - 3\sqrt{3} - 3\sqrt{3} + 2\sqrt{2} \right) = \frac{2}{3} \left( 8 - 6\sqrt{3} + 2\sqrt{2} \right) \] 8. **Final result**: \[ I = \frac{2}{3} \left( 8 + 2\sqrt{2} - 6\sqrt{3} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(2)(1)/(sqrt(x))dx

int_(0)^(1)(dx)/(sqrt(x+1)-sqrt(x))1dx

If int_(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3) , then a =

int_(0)^(1) (dx)/(sqrt(1+x)sqrt(x))=

int_(0)^(1)(1)/(sqrt(x+3))dx =

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

int(1)/(sqrt(x+3)-sqrt(x+2))dx

int_(0)^(1)(1)/(sqrt(3x+2))dx