Home
Class 12
MATHS
int(0)^(1)(x)/(x+1)dx=...

`int_(0)^(1)(x)/(x+1)dx=`

A

`1+log 2`

B

`log 2-1`

C

`log((e )/(2))`

D

`1-log 2+e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x}{x+1} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{1} \frac{x}{x+1} \, dx \] ### Step 2: Use substitution Let \( t = x + 1 \). Then, differentiating both sides gives us: \[ dt = dx \quad \text{and} \quad x = t - 1 \] ### Step 3: Change the limits of integration When \( x = 0 \): \[ t = 0 + 1 = 1 \] When \( x = 1 \): \[ t = 1 + 1 = 2 \] Thus, the limits change from \( x = 0 \) to \( x = 1 \) into \( t = 1 \) to \( t = 2 \). ### Step 4: Rewrite the integral in terms of \( t \) Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int_{1}^{2} \frac{t - 1}{t} \, dt \] This can be split into two separate integrals: \[ I = \int_{1}^{2} \left( 1 - \frac{1}{t} \right) \, dt = \int_{1}^{2} 1 \, dt - \int_{1}^{2} \frac{1}{t} \, dt \] ### Step 5: Evaluate the integrals 1. The first integral: \[ \int_{1}^{2} 1 \, dt = t \bigg|_{1}^{2} = 2 - 1 = 1 \] 2. The second integral: \[ \int_{1}^{2} \frac{1}{t} \, dt = \ln t \bigg|_{1}^{2} = \ln 2 - \ln 1 = \ln 2 - 0 = \ln 2 \] ### Step 6: Combine the results Now, substituting back into our expression for \( I \): \[ I = 1 - \ln 2 \] ### Final Answer Thus, the value of the integral is: \[ I = 1 - \ln 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integrals int_(0)^(1)(x)/(x^(2)+1)dx

Evaluate int_(0)^(1)(1-x)/(1+x)dx

Evaluate int_(0)^(1)(1-x)/(1+x)dx

" (iii) "1=int_(0)^(1)(x-1)(x+2)dx

int_(0)^(1)x(1-x)^(4)dx=(1)/(30)

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)((x)/(x+1))^(2)e^(x)dx equals

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)(x^(2)e^(x))/(x+1)dx equals

int_(0)^(2)(x-1)/(|x-1|)dx

int_(0)^(1)x(1-x)^(99)dx=