Home
Class 12
MATHS
int(0)^(1)(1)/(x^(2)+4x+5)dx =...

`int_(0)^(1)(1)/(x^(2)+4x+5)dx =`

A

`tan^(-1)((1)/(7))`

B

`log((1)/(7))`

C

`sin^(-1)((1)/(7))`

D

log 7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} \frac{1}{x^2 + 4x + 5} \, dx \), we will follow these steps: ### Step 1: Rewrite the quadratic expression We start with the expression in the denominator: \[ x^2 + 4x + 5 \] We can complete the square for the quadratic: \[ x^2 + 4x + 5 = (x^2 + 4x + 4) + 1 = (x + 2)^2 + 1 \] ### Step 2: Substitute the expression into the integral Now we can rewrite the integral: \[ \int_{0}^{1} \frac{1}{(x + 2)^2 + 1} \, dx \] ### Step 3: Make a substitution Let \( t = x + 2 \). Then, \( dx = dt \). We also need to change the limits of integration: - When \( x = 0 \), \( t = 0 + 2 = 2 \) - When \( x = 1 \), \( t = 1 + 2 = 3 \) So, the integral becomes: \[ \int_{2}^{3} \frac{1}{t^2 + 1} \, dt \] ### Step 4: Integrate the new expression The integral \( \int \frac{1}{t^2 + 1} \, dt \) is a standard integral, which equals \( \tan^{-1}(t) \). Thus, we have: \[ \int_{2}^{3} \frac{1}{t^2 + 1} \, dt = \tan^{-1}(t) \bigg|_{2}^{3} \] ### Step 5: Evaluate the definite integral Now we evaluate the definite integral: \[ \tan^{-1}(3) - \tan^{-1}(2) \] ### Step 6: Use the formula for the difference of arctangents To simplify \( \tan^{-1}(3) - \tan^{-1}(2) \), we can use the formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] Here, \( a = 3 \) and \( b = 2 \): \[ \tan^{-1}(3) - \tan^{-1}(2) = \tan^{-1}\left(\frac{3 - 2}{1 + 3 \cdot 2}\right) = \tan^{-1}\left(\frac{1}{1 + 6}\right) = \tan^{-1}\left(\frac{1}{7}\right) \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} \frac{1}{x^2 + 4x + 5} \, dx = \tan^{-1}\left(\frac{1}{7}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)(1)/(x^(2)-4x+7)dx=

int_(0)^(1)(1)/((2x+5))dx

int_(0)^(2)(1)/(4+x-x^(2))dx

int_(0)^(2) (1)/(4+x+x^(2))dx

If int_(0)^(1)(x+4)/(x^(2)+5)dx = a log ((6)/(5))+b tan^(-1)((1)/(sqrt(5))) , then (a, b)-=

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

int_(0)^(1)(2x)/((1+x^(4)))dx

Evaluate "int_(0)^(1)(1)/(1+(x^(2))/(4))dx

Evaluate int_(0)^(1)(1)/(1+(x^(2))/(4))dx

int_(0)^(1)(3x^(2)+5x)dx