Home
Class 12
MATHS
int(2)^(3)(1)/(x^(2)+5x+6)dx =...

`int_(2)^(3)(1)/(x^(2)+5x+6)dx =`

A

`tan^(-1)((25)/(24))`

B

`log((25)/(24))`

C

`sin^(-1)((25)/(24))`

D

`sec^(-1)((25)/(24))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ \int_{2}^{3} \frac{1}{x^2 + 5x + 6} \, dx, \] we will follow these steps: ### Step 1: Factor the quadratic expression The expression in the denominator can be factored. We have: \[ x^2 + 5x + 6 = (x + 2)(x + 3). \] ### Step 2: Rewrite the integral Now we can rewrite the integral as: \[ \int_{2}^{3} \frac{1}{(x + 2)(x + 3)} \, dx. \] ### Step 3: Use partial fraction decomposition We can express the integrand using partial fractions: \[ \frac{1}{(x + 2)(x + 3)} = \frac{A}{x + 2} + \frac{B}{x + 3}. \] Multiplying through by the denominator \((x + 2)(x + 3)\) gives: \[ 1 = A(x + 3) + B(x + 2). \] ### Step 4: Solve for A and B Expanding the right side: \[ 1 = Ax + 3A + Bx + 2B = (A + B)x + (3A + 2B). \] Setting the coefficients equal, we have: 1. \(A + B = 0\) 2. \(3A + 2B = 1\) From the first equation, \(B = -A\). Substituting into the second equation: \[ 3A + 2(-A) = 1 \implies 3A - 2A = 1 \implies A = 1. \] Thus, \(B = -1\). ### Step 5: Rewrite the integral Now we can rewrite the integral: \[ \int_{2}^{3} \left( \frac{1}{x + 2} - \frac{1}{x + 3} \right) \, dx. \] ### Step 6: Integrate term by term Now we can integrate: \[ \int_{2}^{3} \frac{1}{x + 2} \, dx - \int_{2}^{3} \frac{1}{x + 3} \, dx. \] The integrals are: \[ \int \frac{1}{x + 2} \, dx = \ln |x + 2| + C, \] \[ \int \frac{1}{x + 3} \, dx = \ln |x + 3| + C. \] ### Step 7: Evaluate the definite integrals Evaluating the first integral from 2 to 3: \[ \left[ \ln |x + 2| \right]_{2}^{3} = \ln(5) - \ln(4). \] Evaluating the second integral from 2 to 3: \[ \left[ \ln |x + 3| \right]_{2}^{3} = \ln(6) - \ln(5). \] ### Step 8: Combine results Putting it all together: \[ \ln(5) - \ln(4) - (\ln(6) - \ln(5)) = \ln(5) - \ln(4) - \ln(6) + \ln(5). \] This simplifies to: \[ 2\ln(5) - \ln(4) - \ln(6). \] Using the property of logarithms \(\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)\): \[ = \ln\left(\frac{25}{24}\right). \] ### Final Answer Thus, the value of the definite integral is: \[ \int_{2}^{3} \frac{1}{x^2 + 5x + 6} \, dx = \ln\left(\frac{25}{24}\right). \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)-5x+6)dx

int_(1)^(3)(2x^(2)+5x)dx

int_(0)^(1)(3x^(2)+5x)dx

int_(1)^(3)(x^(2)+5x)dx

Evaluate int(x^(2)+1)/(x^(2)-5x+6)dx

(3) int(x^(2)+5x+6)dx

integrate this int(x^(2)+1)/(x^(2)-5x+6)dx

int(x^(2))/(x^(2)-5x+6)dx=

int_(1)^(3)5x^(2)dx

int_(1)^(3)5x^(2)dx