Home
Class 12
MATHS
int(2)^(3)(1)/(2x^(2)+3x-2)dx=...

`int_(2)^(3)(1)/(2x^(2)+3x-2)dx=`

A

`(1)/(5)tan^(-1)((4)/(3))`

B

`(1)/(5)log((4)/(3))`

C

`5 tan^(-1)((3)/(4))`

D

`5 log ((3)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{2}^{3} \frac{1}{2x^2 + 3x - 2} \, dx \), we will follow these steps: ### Step 1: Factor the Denominator First, we need to factor the quadratic expression in the denominator: \[ 2x^2 + 3x - 2 \] We can rearrange \( 3x \) as \( 4x - x \): \[ 2x^2 + 4x - x - 2 = 2x(x + 2) - 1(x + 2) = (2x - 1)(x + 2) \] Thus, we can rewrite the integral as: \[ \int_{2}^{3} \frac{1}{(2x - 1)(x + 2)} \, dx \] ### Step 2: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{1}{(2x - 1)(x + 2)} = \frac{A}{2x - 1} + \frac{B}{x + 2} \] Multiplying through by the denominator \( (2x - 1)(x + 2) \): \[ 1 = A(x + 2) + B(2x - 1) \] Expanding and rearranging gives: \[ 1 = Ax + 2A + 2Bx - B = (A + 2B)x + (2A - B) \] Setting coefficients equal, we have the system: 1. \( A + 2B = 0 \) 2. \( 2A - B = 1 \) From the first equation, \( A = -2B \). Substituting into the second equation: \[ 2(-2B) - B = 1 \implies -4B - B = 1 \implies -5B = 1 \implies B = -\frac{1}{5} \] Substituting back to find \( A \): \[ A = -2(-\frac{1}{5}) = \frac{2}{5} \] Thus, we can rewrite the integral as: \[ \int_{2}^{3} \left( \frac{2/5}{2x - 1} - \frac{1/5}{x + 2} \right) \, dx \] ### Step 3: Integrate Each Term Now we can integrate each term separately: \[ \int \frac{2/5}{2x - 1} \, dx = \frac{2}{5} \cdot \frac{1}{2} \ln |2x - 1| = \frac{1}{5} \ln |2x - 1| \] \[ \int \frac{-1/5}{x + 2} \, dx = -\frac{1}{5} \ln |x + 2| \] Combining these results, we have: \[ \int_{2}^{3} \left( \frac{2/5}{2x - 1} - \frac{1/5}{x + 2} \right) \, dx = \left[ \frac{1}{5} \ln |2x - 1| - \frac{1}{5} \ln |x + 2| \right]_{2}^{3} \] ### Step 4: Evaluate the Definite Integral Now we evaluate the limits: \[ = \frac{1}{5} \left( \ln |2(3) - 1| - \ln |3 + 2| \right) - \frac{1}{5} \left( \ln |2(2) - 1| - \ln |2 + 2| \right) \] Calculating the values: \[ = \frac{1}{5} \left( \ln |6 - 1| - \ln |5| \right) - \frac{1}{5} \left( \ln |4 - 1| - \ln |4| \right) \] \[ = \frac{1}{5} \left( \ln 5 - \ln 5 \right) - \frac{1}{5} \left( \ln 3 - \ln 4 \right) \] \[ = 0 - \frac{1}{5} \left( \ln \frac{3}{4} \right) \] Thus, the final result is: \[ = -\frac{1}{5} \ln \frac{3}{4} \] ### Final Answer The value of the definite integral is: \[ -\frac{1}{5} \ln \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(3)(1)/(x^(2)-3x+2)dx

int_(2)^(3)(dx)/(x^(2)-1)

int_(0)^(1) (1)/(x^(2) +2x+3)dx

int_(1)^(2)(3x-2)dx

int_(1)^(3)(2x+1)dx

int_(0)^(3)(2x^(2)+3x+5)dx

int_(1)^(3)(x-1)(x-2)(x-3)dx=

Evaluate : int_(1)^(2)(x^(3)-1)/(x^(2))dx

int_(1)^(2)(3x)/(9x^(2)-1)dx

int(3x+1)/(2x^(2)+x-1)dx