Home
Class 12
MATHS
int(2)^(3)(x)/((x+2)(x+3))dx=...

`int_(2)^(3)(x)/((x+2)(x+3))dx=`

A

`log((6^(3).4^(2))/(5^(5)))`

B

`log((3^(6).2^(4))/(5^(5)))`

C

`log((24)/(5))`

D

`log((4^(2).5^(3))/(6^(4)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_{2}^{3} \frac{x}{(x+2)(x+3)} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand by adding and subtracting 2 in the numerator: \[ I = \int_{2}^{3} \frac{x + 2 - 2}{(x+2)(x+3)} \, dx = \int_{2}^{3} \frac{x + 2}{(x+2)(x+3)} \, dx - \int_{2}^{3} \frac{2}{(x+2)(x+3)} \, dx \] ### Step 2: Simplify the first term The first term simplifies because \( \frac{x + 2}{(x + 2)(x + 3)} = \frac{1}{x + 3} \): \[ I = \int_{2}^{3} \frac{1}{x + 3} \, dx - \int_{2}^{3} \frac{2}{(x + 2)(x + 3)} \, dx \] ### Step 3: Evaluate the first integral The first integral can be evaluated: \[ \int \frac{1}{x + 3} \, dx = \ln |x + 3| + C \] Thus, \[ \int_{2}^{3} \frac{1}{x + 3} \, dx = \left[ \ln |x + 3| \right]_{2}^{3} = \ln(6) - \ln(5) = \ln\left(\frac{6}{5}\right) \] ### Step 4: Evaluate the second integral For the second integral, we can use partial fractions: \[ \frac{2}{(x + 2)(x + 3)} = \frac{A}{x + 2} + \frac{B}{x + 3} \] Multiplying through by the denominator: \[ 2 = A(x + 3) + B(x + 2) \] Setting \( x = -2 \): \[ 2 = A(1) \Rightarrow A = 2 \] Setting \( x = -3 \): \[ 2 = B(-1) \Rightarrow B = -2 \] Thus, \[ \frac{2}{(x + 2)(x + 3)} = \frac{2}{x + 2} - \frac{2}{x + 3} \] Now we can integrate: \[ \int_{2}^{3} \left( \frac{2}{x + 2} - \frac{2}{x + 3} \right) \, dx = 2 \left( \int_{2}^{3} \frac{1}{x + 2} \, dx - \int_{2}^{3} \frac{1}{x + 3} \, dx \right) \] Calculating these integrals: \[ \int_{2}^{3} \frac{1}{x + 2} \, dx = \left[ \ln |x + 2| \right]_{2}^{3} = \ln(5) - \ln(4) = \ln\left(\frac{5}{4}\right) \] Thus, \[ \int_{2}^{3} \left( \frac{2}{x + 2} - \frac{2}{x + 3} \right) \, dx = 2 \left( \ln\left(\frac{5}{4}\right) - \ln\left(\frac{6}{5}\right) \right) \] ### Step 5: Combine results Now we can combine the results: \[ I = \ln\left(\frac{6}{5}\right) - 2 \left( \ln\left(\frac{5}{4}\right) - \ln\left(\frac{6}{5}\right) \right) \] This simplifies to: \[ I = \ln\left(\frac{6}{5}\right) - 2\ln\left(\frac{5}{4}\right) + 2\ln\left(\frac{6}{5}\right) = 3\ln\left(\frac{6}{5}\right) - 2\ln\left(\frac{5}{4}\right) \] ### Step 6: Final simplification Using the properties of logarithms: \[ I = \ln\left(\left(\frac{6}{5}\right)^3\right) - \ln\left(\left(\frac{5}{4}\right)^2\right) = \ln\left(\frac{(6^3)}{(5^2)(4^2)}\right) \] Thus, the final answer is: \[ I = \ln\left(\frac{216}{100}\right) = \ln\left(\frac{54}{25}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3)(dx)/(x^(2)-x)=

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int(2x^(3))/((x+1)(x-3)^(2))dx

int(2x-3)/((x-1)(x-2)(x-3))dx

int_(0)^(3)(1)/(x^(2)-3x+2)dx

Evaluate :int_(1)^(2)(x+3)/(x(x+2))dx

int_(1)^(2)(x+3)/(x(x+2))dx

int_(2)^(3)(x^(3)+2x-2)/(x^(3)(x-1))dx

int_(2)^(3)(x^(3)+2x-2)/(x^(3)(x-1))dx

int_(2)^(3)((3+log x)^(2))/(x)dx