Home
Class 12
MATHS
int(pi//4)^(pi//2)cot^(2)x dx =...

`int_(pi//4)^(pi//2)cot^(2)x dx =`

A

`(pi-4)/(4)`

B

`1-(pi)/(4)`

C

`1-(pi)/(2)`

D

`(pi)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that: \[ \cot^2 x = \csc^2 x - 1 \] Thus, we can rewrite the integral as: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^2 x \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\csc^2 x - 1) \, dx \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^2 x \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc^2 x \, dx - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 \, dx \] ### Step 3: Integrate each part 1. The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] Therefore, \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc^2 x \, dx = \left[-\cot x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = -\cot\left(\frac{\pi}{2}\right) + \cot\left(\frac{\pi}{4}\right) \] Since \( \cot\left(\frac{\pi}{2}\right) = 0 \) and \( \cot\left(\frac{\pi}{4}\right) = 1 \), this becomes: \[ -0 + 1 = 1 \] 2. The integral of \( 1 \) is: \[ \int 1 \, dx = x \] Thus, \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 \, dx = \left[x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Step 4: Combine the results Now we combine the results from the two integrals: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^2 x \, dx = 1 - \frac{\pi}{4} \] ### Final Answer Thus, the final answer is: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^2 x \, dx = 1 - \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(pi/4)^( pi/3)cot^(2)xdx=?

int_(-pi//4)^(pi//4)sin^(2)x dx=

int_(pi/6)^( pi/4)cot^(2)xdx

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2

int_(pi//6)^(pi//4)cosec 2x dx=

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx