Home
Class 12
MATHS
int(0)^(pi//2)sin^(4)x cos^(3)x dx =...

`int_(0)^(pi//2)sin^(4)x cos^(3)x dx =`

A

35

B

`(1)/(35)`

C

`(2)/(35)`

D

`(1)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^3 x \, dx \] We can express \( \cos^3 x \) as \( \cos^2 x \cdot \cos x \). Since \( \cos^2 x = 1 - \sin^2 x \), we can rewrite it as: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x (1 - \sin^2 x) \cos x \, dx \] ### Step 2: Substitution Now, we will use the substitution \( t = \sin x \). Then, we differentiate: \[ dt = \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\cos x} \] We also need to change the limits of integration. When \( x = 0 \), \( t = \sin(0) = 0 \) and when \( x = \frac{\pi}{2} \), \( t = \sin\left(\frac{\pi}{2}\right) = 1 \). Therefore, the limits change from \( 0 \) to \( 1 \). ### Step 3: Substitute in the Integral Substituting \( t \) into the integral gives: \[ \int_{0}^{1} t^4 (1 - t^2) \, dt \] This simplifies to: \[ \int_{0}^{1} (t^4 - t^6) \, dt \] ### Step 4: Integrate Now we can integrate term by term: \[ \int_{0}^{1} t^4 \, dt - \int_{0}^{1} t^6 \, dt \] Calculating these integrals: \[ \int t^4 \, dt = \frac{t^5}{5} \quad \text{and} \quad \int t^6 \, dt = \frac{t^7}{7} \] Thus, we have: \[ \left[ \frac{t^5}{5} \right]_{0}^{1} - \left[ \frac{t^7}{7} \right]_{0}^{1} \] Evaluating at the limits: \[ \left( \frac{1^5}{5} - 0 \right) - \left( \frac{1^7}{7} - 0 \right) = \frac{1}{5} - \frac{1}{7} \] ### Step 5: Find a Common Denominator To combine these fractions, we find a common denominator, which is \( 35 \): \[ \frac{1}{5} = \frac{7}{35} \quad \text{and} \quad \frac{1}{7} = \frac{5}{35} \] Thus: \[ \frac{1}{5} - \frac{1}{7} = \frac{7}{35} - \frac{5}{35} = \frac{2}{35} \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^3 x \, dx = \frac{2}{35} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi)( sin x*cos^(3)x)dx