Home
Class 12
MATHS
int(0)^(pi//2)(cos x)/((1+sin x)^(3))dx=...

`int_(0)^(pi//2)(cos x)/((1+sin x)^(3))dx=`

A

`(8)/(3)`

B

`(3)/(8)`

C

`(33)/(88)`

D

`(88)/(33)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{(1 + \sin x)^{3}} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \( t = 1 + \sin x \). Then, we differentiate both sides to find \( dx \): \[ dt = \cos x \, dx \implies dx = \frac{dt}{\cos x}. \] ### Step 2: Change Limits Next, we need to change the limits of integration. When \( x = 0 \): \[ t = 1 + \sin(0) = 1. \] When \( x = \frac{\pi}{2} \): \[ t = 1 + \sin\left(\frac{\pi}{2}\right) = 1 + 1 = 2. \] Thus, the new limits for \( t \) are from 1 to 2. ### Step 3: Express \(\cos x\) in terms of \(t\) From our substitution \( t = 1 + \sin x \), we can express \(\sin x\) as: \[ \sin x = t - 1. \] Using the identity \(\cos^2 x + \sin^2 x = 1\), we have: \[ \cos^2 x = 1 - \sin^2 x = 1 - (t - 1)^2 = 1 - (t^2 - 2t + 1) = 2t - t^2. \] Thus, \[ \cos x = \sqrt{2t - t^2}. \] ### Step 4: Substitute in the Integral Now, substituting \( \cos x \) and \( dx \) into the integral, we get: \[ I = \int_{1}^{2} \frac{\sqrt{2t - t^2}}{t^3} \cdot \frac{dt}{\sqrt{2t - t^2}} = \int_{1}^{2} \frac{1}{t^3} \, dt. \] ### Step 5: Integrate Now we can integrate: \[ I = \int_{1}^{2} t^{-3} \, dt = \left[ -\frac{1}{2t^2} \right]_{1}^{2}. \] Calculating the limits: \[ I = -\frac{1}{2(2^2)} - \left(-\frac{1}{2(1^2)}\right) = -\frac{1}{8} + \frac{1}{2} = -\frac{1}{8} + \frac{4}{8} = \frac{3}{8}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{3}{8}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cos x)/(1-sin^(m)x)dx

int_(0)^(pi//2)(cos x)/((3+sin x)(4+sin x))dx=

int_(0)^(pi//2)(sin x)/((sin x + cos x)^(3))dx=

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=

S olve int_(0)^((pi)/(2))(cos x)/((1+sin x)(2+sin x))dx

S olve int_(0)^((pi)/(2))(cos x)/((1+sin x)(2+sin x))dx

int_(0)^( pi/2)|cos x-sin x|dx