Home
Class 12
MATHS
int(0)^(pi//2)(cos x)/(4-sin^(2)x)dx =...

`int_(0)^(pi//2)(cos x)/(4-sin^(2)x)dx =`

A

`(1)/(4)log 3`

B

`(1)/(3)log 4`

C

`4log((1)/(3))`

D

`(1)/(2)log 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{4 - \sin^2 x} \, dx, \] we will perform a substitution and simplify the integral step by step. ### Step 1: Substitution Let \( t = \sin x \). Then, the differential \( dt = \cos x \, dx \). When \( x = 0 \), \( t = \sin(0) = 0 \). When \( x = \frac{\pi}{2} \), \( t = \sin\left(\frac{\pi}{2}\right) = 1 \). Thus, the limits of integration change from \( x = 0 \) to \( x = \frac{\pi}{2} \) into \( t = 0 \) to \( t = 1 \). Now, we can rewrite the integral: \[ I = \int_{0}^{1} \frac{1}{4 - t^2} \, dt. \] ### Step 2: Simplifying the Integral We can factor the denominator: \[ 4 - t^2 = (2 - t)(2 + t). \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \frac{1}{(2 - t)(2 + t)} \, dt. \] ### Step 3: Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{1}{(2 - t)(2 + t)} = \frac{A}{2 - t} + \frac{B}{2 + t}. \] Multiplying through by the denominator \( (2 - t)(2 + t) \): \[ 1 = A(2 + t) + B(2 - t). \] Expanding this gives: \[ 1 = (2A + 2B) + (A - B)t. \] Setting up the system of equations: 1. \( 2A + 2B = 1 \) 2. \( A - B = 0 \) From the second equation, we have \( A = B \). Substituting \( B = A \) into the first equation: \[ 2A + 2A = 1 \implies 4A = 1 \implies A = \frac{1}{4}, \, B = \frac{1}{4}. \] Thus, we can rewrite the integral: \[ I = \int_{0}^{1} \left( \frac{1/4}{2 - t} + \frac{1/4}{2 + t} \right) dt. \] ### Step 4: Integrating Now we can integrate each term separately: \[ I = \frac{1}{4} \int_{0}^{1} \frac{1}{2 - t} \, dt + \frac{1}{4} \int_{0}^{1} \frac{1}{2 + t} \, dt. \] The integrals can be computed as follows: 1. For \( \int \frac{1}{2 - t} \, dt = -\log|2 - t| \). 2. For \( \int \frac{1}{2 + t} \, dt = \log|2 + t| \). Thus, we have: \[ I = \frac{1}{4} \left[ -\log|2 - t| \right]_{0}^{1} + \frac{1}{4} \left[ \log|2 + t| \right]_{0}^{1}. \] Calculating these limits: 1. For \( -\log|2 - t| \) from \( 0 \) to \( 1 \): \[ -\log|2 - 1| + \log|2 - 0| = -\log(1) + \log(2) = 0 + \log(2) = \log(2). \] 2. For \( \log|2 + t| \) from \( 0 \) to \( 1 \): \[ \log|2 + 1| - \log|2 + 0| = \log(3) - \log(2) = \log\left(\frac{3}{2}\right). \] Combining these results: \[ I = \frac{1}{4} \left( \log(2) + \log\left(\frac{3}{2}\right) \right) = \frac{1}{4} \log\left(2 \cdot \frac{3}{2}\right) = \frac{1}{4} \log(3). \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{4} \log(3). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sin x.cos x)/(1+sin^(4)x)dx=

int_(0)^( pi/2)|cos x-sin x|dx

Prove that : int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(pi)/(16)

int_(0)^(pi)(cos^(4)x-sin^(4)x)dx=

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

Evaluate :int_(0)^( pi/4)cos2x sqrt(4-sin2x)dx