Home
Class 12
MATHS
int(0)^(log 2)(e^(x))/(1+e^(x))dx=...

`int_(0)^(log 2)(e^(x))/(1+e^(x))dx=`

A

log 6

B

`log((2)/(3))`

C

`log((3)/(2))`

D

log 8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{0}^{\log 2} \frac{e^x}{1 + e^x} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + e^x \). Then, we differentiate both sides: \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} \] From our substitution, we can express \( e^x \) in terms of \( t \): \[ e^x = t - 1 \] ### Step 2: Change the limits of integration Next, we need to change the limits of integration according to our substitution: - When \( x = 0 \): \[ t = 1 + e^0 = 1 + 1 = 2 \] - When \( x = \log 2 \): \[ t = 1 + e^{\log 2} = 1 + 2 = 3 \] Thus, the limits change from \( x: 0 \) to \( \log 2 \) into \( t: 2 \) to \( 3 \). ### Step 3: Substitute in the integral Now we can substitute into the integral: \[ \int_{0}^{\log 2} \frac{e^x}{1 + e^x} \, dx = \int_{2}^{3} \frac{t - 1}{t} \cdot \frac{dt}{e^x} \] Since \( e^x = t - 1 \), we have: \[ \int_{2}^{3} \frac{t - 1}{t} \cdot \frac{dt}{t - 1} = \int_{2}^{3} \frac{1}{t} \, dt \] ### Step 4: Evaluate the integral The integral \( \int \frac{1}{t} \, dt \) is: \[ \log t \] Thus, we evaluate: \[ \int_{2}^{3} \frac{1}{t} \, dt = \left[ \log t \right]_{2}^{3} = \log 3 - \log 2 \] ### Step 5: Simplify the result Using the properties of logarithms: \[ \log 3 - \log 2 = \log \left( \frac{3}{2} \right) \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{\log 2} \frac{e^x}{1 + e^x} \, dx = \log \left( \frac{3}{2} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int log(e^(x)+1)(e^(x))dx

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

int(ln(e^(x)+1))/(e^(x))dx

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(1)^(2) (log_(e) x)/(x^(2)) dx

Evaluate the following definite integral: int_(1)^(e)(e^(x))/(x)(1+x log x)dx