Home
Class 12
MATHS
int(0)^(1)(e^(2x)-1)/(e^(2x)+1)dx=...

`int_(0)^(1)(e^(2x)-1)/(e^(2x)+1)dx=`

A

`log(e-(1)/(e ))`

B

`log(e+(1)/(e ))`

C

`log((1)/(e )-e)`

D

`log (1+e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

6*int_(0)^(1)(e^(2x))/(1+e^(2x))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int(e^(2x)+1)/(e^(x))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(5x)-1)/(e^(2x))dx

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int(e^(2x)+1)/(e^(2x)-1)dx=