Home
Class 12
MATHS
int(1)^(e^(3))(1)/(x sqrt(1+log x))dx=...

`int_(1)^(e^(3))(1)/(x sqrt(1+log x))dx=`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e )(1)/(x sqrt(log x))dx=

int_(1)^(2)(1)/(x sqrt(log x))dx =

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

Evaluate the following definite integral: int_(1)^(e)(e^(x))/(x)(1+x log x)dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

int_(1)^(3)(log x)/(x)dx

int ln((1)/(e^(x)))dx

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx